Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lethal needle blight epidemic may be related to climate change

01.09.2005


Increased summer precipitation apparently helping to spread spores of pathogen



Biologists studying a lethal blight of lodgepole pines in northwestern British Columbia present strong evidence in the September issue of BioScience that climate change is to blame for the outbreak. The blight, caused by the fungus Dothistroma septosporum, causes trees to lose their needles and, in the case of the British Columbia outbreak, eventually die. D. septosporum has long been recognized as a pathogen of pines, but although it is considered a serious disease of exotic plantations in the Southern Hemisphere, it has until now been considered a minor threat to northern temperate forests. Lodgepole pines are an economically important species, being used in construction and for pulp.

Alex Woods and his colleagues at the British Columbia Forest Service and the University of Alberta investigated climate records in the area of the outbreak. The records provided no evidence of warming in the affected area in recent years, but they did reveal a clear increase in summer precipitation over the past decade. That constituted a smoking gun, because D. septosporum’s life cycle depends on summer moisture for spore distribution. The increase in precipitation had no clear link to a known climatic oscillation that might have explained it, and the authors conclude that it is most likely related to a directional climate trend. The report of Woods et al. appears to represent one of a growing number of examples of an indirect effect of climate change, because increased summer precipitation would have been expected, absent D. septosporum, to benefit lodgepole pines.

Donna Royston | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>