Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bumblebee see, bumblebee do

01.09.2005


Just as travelers figure out which restaurant is good by the numbers of cars in the parking lot, bumblebees decide which flowers to visit by seeing which ones already have bee visitors.


A live Bombus impatiens bumblebee (left) feeds at a cotton wick soaked with sugar water that protrudes from an artificial flower. The bumblebee model on the right is positioned to simulate a feeding bee. Photo credit: Brad Worden.



Bumblebees that watched other bees forage on green artificial flowers were twice as likely to choose the green flowers over orange flowers when it was their turn to forage, according to new research.

The finding is the first demonstration that insects can learn by just watching the behavior of other insects.


"Studying a variety of different animals -- everything from chimpanzees to bees -- that show some kind of social learning, will give us a better understanding of how social learning occurs," said behavioral ecologist Bradley D. Worden of The University of Arizona in Tucson. "One of the cool things we’re finding out from bees is that complex behavior and advanced forms of learning can come from small brains."

Worden, a postdoctoral research associate in UA’s department of ecology and evolutionary biology, conducted his work on the brainy bees with Daniel R. Papaj, a UA professor of ecology and evolutionary biology. The team’s report has been released online and will be published in an upcoming issue of Biology Letters of the Royal Society. The National Science Foundation funded the research.

Charles Darwin was one inspiration for the study because he wrote about the possibility that honeybees were watching and learning from bumblebees, Worden said.

While observing bumblebees in the field, Worden, too, got the impression that bees were copying the behavior of other bees.

"Honeybees and bumblebees are social creatures – they live in these colonies," Worden said. "We know that they communicate with one another, at least in the nest, but nobody had really studied whether outside the nest they’re paying attention to what other individuals are doing." So Worden and Papaj designed experiments to test whether Darwin’s musings might be true.

They trained Bombus impatiens bumblebees to visit a particular color for food by using artificial flowers -- green or orange paper circles that were 7 cm (about three inches) in diameter. At some of the "flowers" the bees could feed at cotton wicks soaked in sugar water. Without training, bumblebees tended to prefer orange over green. The bees, who can easily see the difference between the two colors, learned to prefer the color that had the sugar water.

The trained bumblebees visited a feeding arena that had three green and three orange circles. A small plexiglass tube with an observation port was positioned 25 cm (about 10 inches) away. Other bumblebees, one at a time, were allowed to press their faces against the port and watch from three to 12 trained bees feed for 10 minutes. At that distance, an observer bee could tell that there were bees on the flowers, but probably couldn’t tell exactly what the bees were doing.

A separate set of observer bees served as controls: they got to watch the feeding arena for 10 minutes with no bees in it.

Then the lights were turned off and, behind the scenes, the feeding bees and their flowers were removed. A new set of three green and three orange artificial flowers was set up in the feeding arena, but the flowers had no food and the location of the particular colors was different from what the bumblebee had observed.

The observer bees were then allowed, one at a time, to visit the artificial flowers. Observers that had watched bumblebees feed on green were twice as likely to visit the green circles. To make sure that odor cues were not somehow influencing the observer bees, Worden made model bumblebees using life-size resin models of bumblebees painted in bee colors and with real bumblebee wings glued on. He then repeated the experiments with a new set of observer bumblebees watching the "behavior" of the models.

When it was their turn to forage, the watchers preferred the color that the model bees were "visiting."

While honeybees do a dance to communicate to hive mates the location of good flowers, bumblebees do not. Worden speculates that watching other bees in the field may be particularly important for bumblebees because they cannot find out from their hive mates exactly where the good flowers are located.

Papaj noted that Darwin’s original proposition, that one species of bee may watch and learn from other species of bees, remains to be tested. He added that such "eavesdropping" would greatly expand a colony’s sources of information about rewarding flowers.

Worden and Papaj plan to conduct more research to determine when bees copy others and when they learn on their own.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>