Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques study the brain’s chemistry, neuron by neuron

01.09.2005


The human brain is composed of billions of cells, each a separate entity that communicates with others. The chemical interaction of those cells determines personality, controls behavior and encodes memory; but much remains to be understood.



Researchers at the University of Illinois at Urbana-Champaign have developed tools for studying the chemistry of the brain, neuron by neuron. The analytical techniques can probe the spatial and temporal distribution of biologically important molecules, such as vitamin E, and explore the chemical messengers behind thought, memory and emotion.

"In most organ tissues of the body, adjacent cells do not have significant differences in their chemical contents," said Jonathan Sweedler, a William H. and Janet Lycan Professor of Chemistry and director of the Biotechnology Center at the U. of I. "In the brain, however, chemical differences between neurons are critical for their operation, and the connections between cells are crucial for encoding information or controlling functions."


By dismantling a slice of brain tissue into millions of single cell-size pieces, each of which can be interrogated by mass spectrometric imaging techniques, Sweedler’s research group can perform cellular profiling, examine intercellular signaling, map the distribution of new neuropeptides, and follow the release of chemicals in an activity-dependent manner.

Sweedler will describe the techniques and present new results at the 230th American Chemical Society national meeting in Washington, D.C. Using these techniques, Sweedler’s group has already discovered multiple novel neuropeptides in a range of neuronal models from mollusks to mammals.

"We work with sea slugs, whose simple brains contain 10,000 neurons; we work with insects possessing one million neurons; and we work with mice having 100 million neurons," said Sweedler, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "Working with these model organisms allows us to examine the functioning of such basic operations as the neuronal control of behavior and long-term memory."

Sweedler’s group also developed an approach for looking at the distribution of smaller molecules in brain cells. In a paper accepted for publication in the Journal of the American Chemical Society, and posted on its Web site, they report the subcellular imaging of vitamin E in the sea slug Aplysia californica.

The researchers utilized novel sampling protocols and single cell time-of-flight secondary ion mass spectrometry to identify and map the presence of vitamin E in the membranes of isolated neurons.

"To our surprise, we found that vitamin E was not distributed uniformly in the neuronal membrane," Sweedler said. "Instead, vitamin E was concentrated in the neuron right where it extends to connect with other neurons."

The subcellular localization of vitamin E, which had been impossible to obtain in the past, supports other work that suggested vitamin E performed an active role in transport mechanisms and cellular signaling of neurons.

"Our technique doesn’t tell us how or why vitamin E is distributed this way, but suggests that it is under active control and tight regulation," Sweedler said. "Understanding the chemistry that takes place within and between neurons, including small molecules like vitamin E, will no doubt lead to a better understanding of brain function in healthy and diseased brains."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>