Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques study the brain’s chemistry, neuron by neuron

01.09.2005


The human brain is composed of billions of cells, each a separate entity that communicates with others. The chemical interaction of those cells determines personality, controls behavior and encodes memory; but much remains to be understood.



Researchers at the University of Illinois at Urbana-Champaign have developed tools for studying the chemistry of the brain, neuron by neuron. The analytical techniques can probe the spatial and temporal distribution of biologically important molecules, such as vitamin E, and explore the chemical messengers behind thought, memory and emotion.

"In most organ tissues of the body, adjacent cells do not have significant differences in their chemical contents," said Jonathan Sweedler, a William H. and Janet Lycan Professor of Chemistry and director of the Biotechnology Center at the U. of I. "In the brain, however, chemical differences between neurons are critical for their operation, and the connections between cells are crucial for encoding information or controlling functions."


By dismantling a slice of brain tissue into millions of single cell-size pieces, each of which can be interrogated by mass spectrometric imaging techniques, Sweedler’s research group can perform cellular profiling, examine intercellular signaling, map the distribution of new neuropeptides, and follow the release of chemicals in an activity-dependent manner.

Sweedler will describe the techniques and present new results at the 230th American Chemical Society national meeting in Washington, D.C. Using these techniques, Sweedler’s group has already discovered multiple novel neuropeptides in a range of neuronal models from mollusks to mammals.

"We work with sea slugs, whose simple brains contain 10,000 neurons; we work with insects possessing one million neurons; and we work with mice having 100 million neurons," said Sweedler, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "Working with these model organisms allows us to examine the functioning of such basic operations as the neuronal control of behavior and long-term memory."

Sweedler’s group also developed an approach for looking at the distribution of smaller molecules in brain cells. In a paper accepted for publication in the Journal of the American Chemical Society, and posted on its Web site, they report the subcellular imaging of vitamin E in the sea slug Aplysia californica.

The researchers utilized novel sampling protocols and single cell time-of-flight secondary ion mass spectrometry to identify and map the presence of vitamin E in the membranes of isolated neurons.

"To our surprise, we found that vitamin E was not distributed uniformly in the neuronal membrane," Sweedler said. "Instead, vitamin E was concentrated in the neuron right where it extends to connect with other neurons."

The subcellular localization of vitamin E, which had been impossible to obtain in the past, supports other work that suggested vitamin E performed an active role in transport mechanisms and cellular signaling of neurons.

"Our technique doesn’t tell us how or why vitamin E is distributed this way, but suggests that it is under active control and tight regulation," Sweedler said. "Understanding the chemistry that takes place within and between neurons, including small molecules like vitamin E, will no doubt lead to a better understanding of brain function in healthy and diseased brains."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>