Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques study the brain’s chemistry, neuron by neuron

01.09.2005


The human brain is composed of billions of cells, each a separate entity that communicates with others. The chemical interaction of those cells determines personality, controls behavior and encodes memory; but much remains to be understood.



Researchers at the University of Illinois at Urbana-Champaign have developed tools for studying the chemistry of the brain, neuron by neuron. The analytical techniques can probe the spatial and temporal distribution of biologically important molecules, such as vitamin E, and explore the chemical messengers behind thought, memory and emotion.

"In most organ tissues of the body, adjacent cells do not have significant differences in their chemical contents," said Jonathan Sweedler, a William H. and Janet Lycan Professor of Chemistry and director of the Biotechnology Center at the U. of I. "In the brain, however, chemical differences between neurons are critical for their operation, and the connections between cells are crucial for encoding information or controlling functions."


By dismantling a slice of brain tissue into millions of single cell-size pieces, each of which can be interrogated by mass spectrometric imaging techniques, Sweedler’s research group can perform cellular profiling, examine intercellular signaling, map the distribution of new neuropeptides, and follow the release of chemicals in an activity-dependent manner.

Sweedler will describe the techniques and present new results at the 230th American Chemical Society national meeting in Washington, D.C. Using these techniques, Sweedler’s group has already discovered multiple novel neuropeptides in a range of neuronal models from mollusks to mammals.

"We work with sea slugs, whose simple brains contain 10,000 neurons; we work with insects possessing one million neurons; and we work with mice having 100 million neurons," said Sweedler, who also is a researcher at the Beckman Institute for Advanced Science and Technology. "Working with these model organisms allows us to examine the functioning of such basic operations as the neuronal control of behavior and long-term memory."

Sweedler’s group also developed an approach for looking at the distribution of smaller molecules in brain cells. In a paper accepted for publication in the Journal of the American Chemical Society, and posted on its Web site, they report the subcellular imaging of vitamin E in the sea slug Aplysia californica.

The researchers utilized novel sampling protocols and single cell time-of-flight secondary ion mass spectrometry to identify and map the presence of vitamin E in the membranes of isolated neurons.

"To our surprise, we found that vitamin E was not distributed uniformly in the neuronal membrane," Sweedler said. "Instead, vitamin E was concentrated in the neuron right where it extends to connect with other neurons."

The subcellular localization of vitamin E, which had been impossible to obtain in the past, supports other work that suggested vitamin E performed an active role in transport mechanisms and cellular signaling of neurons.

"Our technique doesn’t tell us how or why vitamin E is distributed this way, but suggests that it is under active control and tight regulation," Sweedler said. "Understanding the chemistry that takes place within and between neurons, including small molecules like vitamin E, will no doubt lead to a better understanding of brain function in healthy and diseased brains."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>