Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virginia Tech engineer investigates enzyme link to neurological disease


Several neurologically based afflictions, such as Huntington’s, Parkinson’s, and Alzheimer diseases, have been correlated to a higher than normal presence of a specific type of enzymes, called transglutaminases (TGase) in the human body. TGases, whose function is to catalyze covalent bonds among proteins, are commonly found in several different human tissues.

In the presence of unusually high levels of these enzymes, some proteins tend to form denser clusters than normal in vivo. If the aggregates grow in size, it can lead to a build-up of insoluble plaques that can block neurovascular transport and cause neural cell death.

"If higher TGase concentrations in cerebrospinal fluid and in the brain lead to protein agglomeration, then their inhibition could reduce symptoms, delay the onset of agglomeration, and maintain viable neural cell health extending the quality of life for those afflicted," hypothesizes Brian Love, a professor of materials science and engineering (MSE) at Virginia Tech.

Love, who focuses his research on tissue and cell engineering, and Elena Fernandez Burguera, a post-doctoral research associate, are evaluating specific therapies to fight the abnormally high TGase binding. Based upon the prior work of several others who are conducting clinical trials, Love and Burguera are developing an in vitro model to evaluate the ability of several inhibitors to block protein aggregation by TGases.

Again, based on the work of other scientists, "several compounds show some positive effects," Love says. These include creatine, cystamine hydrochloride, and a few others. "The development of an inhibition protocol may help test the efficacy of other inhibitors as well," the engineer adds.

The Virginia Tech researchers are looking at the enzymatic binding of protein-bound polystyrene particles as models. Groups of particles are dispersed in calcium-rich aqueous solutions containing TGases. Once mixed, the particle binding begins. The bigger agglomerates attempt to settle out of the solution, and Love and Burguera track particle sedimentation.

The tracking method, called Z-axis Translating Laser Light Scattering (ZATLLS), is unique to Virginia Tech and based on key concepts in transport phenomena. It has been used to gauge how other complex fluids, such as paints and sealants, are dispersed. Now Love and Burguera are resolving when protein coated particles are effectively dispersed in vitro and under what conditions they are unstable enough to agglomerate.

They track in situ sedimentation of protein-coated particles exposed to transglutaminase, both in the presence of and without transglutaminase inhibitors. "We can use ZATLLS to resolve whether inhibitors prevent agglomeration of protein coated particles by TGase if the inhibitors lower the particle sedimentation velocity," Love says. "Our goal is to find the safest and most effective inhibitors that prevent the agglomeration-based crosslinking found throughout these neurological disorders."

Lynn Nystrom | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>