Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State professor developing new strategies for delivery of drugs to fight, treat tuberculosis

31.08.2005


It has been identified by the World Health Organization as the most dangerous infectious disease, causing more deaths -- more than 2 million a year -- than any other single infection. Approximately one-third of the world’s population is already infected. "It" is Mycobacterium tuberculosis.



A Kansas State University chemistry professor is seeking to stem the tide in the war against TB. According to the WHO, no new antituberculosis drugs have been marketed during the last 30 years. As such, new strategies are needed to lead to the successful development of antituberculosis therapies.

K-State’s Stefan H. Bossmann is researching a new strategy for treatment of the deadly infectious disease using ruthenium-polypyridyl-complexes as antimycobacterial drugs.


Bossmann’s research explores unique physical and chemical properties of channel proteins called porins, isolated from Mycobacterium smegmatis and Mycobacterium tuberculosis. He is attempting to understand the working principles of porin channels in natural and artificial environments and he hopes to eventually develop supramolecular model systems to serve as physical models for the biological function of the porin systems.

Bossmann will discuss his research at the American Chemical Society’s national meeting and exposition, Aug. 28 - Sept. 1, in Washington, D.C. He will give an oral presentation at the conference Tuesday, Aug. 30.

"We have more and more resistant strains developing in Asia and Russia. We’re also getting a large number of patients infected with TB immigrating to the United States," Bossmann said.

According to Bossmann, not many antibiotics actually work in treating TB because the disease has been steadily developing resistance to them. This makes new strategies for the delivery of drugs urgently needed, he said.

"It will become extremely difficult to treat cases of TB, in say 10 to 20 years down the road, because new treatment possibilities have not been developed," he said.

A "cocktail" consisting of a variety of drugs must be used to treat TB patients and they must be treated for several months, Bossmann said, but the problem with the conventional treatment is that microbacteria in TB grows slowly, helping it to evade the drugs.

"You might think this is a disadvantage, but it is not," Bossmann said. "The microbacteria has the talent to evade all of those medicines."

Mycobacterium TB has just a few pores in its outer walls which regulate basically all of its metabolics, Bossmann said. When the mycobacteria senses something dangerous like antibiotics, it simply closes the channel.

Bossmann’s research is targeting the channels.

"It is the only way for the cells to have an exchange with the outside world as far as we know: to block them and put complexes in which bond irreversibly within those channels, depriving the channels of any possibility to take nutrients in or to discharge waste from its metabolism," he said. "This approach can permanently deactivate TB so that the human immune system can deal with it."

Stefan H. Bossmann | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>