Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State professor developing new strategies for delivery of drugs to fight, treat tuberculosis

31.08.2005


It has been identified by the World Health Organization as the most dangerous infectious disease, causing more deaths -- more than 2 million a year -- than any other single infection. Approximately one-third of the world’s population is already infected. "It" is Mycobacterium tuberculosis.



A Kansas State University chemistry professor is seeking to stem the tide in the war against TB. According to the WHO, no new antituberculosis drugs have been marketed during the last 30 years. As such, new strategies are needed to lead to the successful development of antituberculosis therapies.

K-State’s Stefan H. Bossmann is researching a new strategy for treatment of the deadly infectious disease using ruthenium-polypyridyl-complexes as antimycobacterial drugs.


Bossmann’s research explores unique physical and chemical properties of channel proteins called porins, isolated from Mycobacterium smegmatis and Mycobacterium tuberculosis. He is attempting to understand the working principles of porin channels in natural and artificial environments and he hopes to eventually develop supramolecular model systems to serve as physical models for the biological function of the porin systems.

Bossmann will discuss his research at the American Chemical Society’s national meeting and exposition, Aug. 28 - Sept. 1, in Washington, D.C. He will give an oral presentation at the conference Tuesday, Aug. 30.

"We have more and more resistant strains developing in Asia and Russia. We’re also getting a large number of patients infected with TB immigrating to the United States," Bossmann said.

According to Bossmann, not many antibiotics actually work in treating TB because the disease has been steadily developing resistance to them. This makes new strategies for the delivery of drugs urgently needed, he said.

"It will become extremely difficult to treat cases of TB, in say 10 to 20 years down the road, because new treatment possibilities have not been developed," he said.

A "cocktail" consisting of a variety of drugs must be used to treat TB patients and they must be treated for several months, Bossmann said, but the problem with the conventional treatment is that microbacteria in TB grows slowly, helping it to evade the drugs.

"You might think this is a disadvantage, but it is not," Bossmann said. "The microbacteria has the talent to evade all of those medicines."

Mycobacterium TB has just a few pores in its outer walls which regulate basically all of its metabolics, Bossmann said. When the mycobacteria senses something dangerous like antibiotics, it simply closes the channel.

Bossmann’s research is targeting the channels.

"It is the only way for the cells to have an exchange with the outside world as far as we know: to block them and put complexes in which bond irreversibly within those channels, depriving the channels of any possibility to take nutrients in or to discharge waste from its metabolism," he said. "This approach can permanently deactivate TB so that the human immune system can deal with it."

Stefan H. Bossmann | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>