Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State professor developing new strategies for delivery of drugs to fight, treat tuberculosis

31.08.2005


It has been identified by the World Health Organization as the most dangerous infectious disease, causing more deaths -- more than 2 million a year -- than any other single infection. Approximately one-third of the world’s population is already infected. "It" is Mycobacterium tuberculosis.



A Kansas State University chemistry professor is seeking to stem the tide in the war against TB. According to the WHO, no new antituberculosis drugs have been marketed during the last 30 years. As such, new strategies are needed to lead to the successful development of antituberculosis therapies.

K-State’s Stefan H. Bossmann is researching a new strategy for treatment of the deadly infectious disease using ruthenium-polypyridyl-complexes as antimycobacterial drugs.


Bossmann’s research explores unique physical and chemical properties of channel proteins called porins, isolated from Mycobacterium smegmatis and Mycobacterium tuberculosis. He is attempting to understand the working principles of porin channels in natural and artificial environments and he hopes to eventually develop supramolecular model systems to serve as physical models for the biological function of the porin systems.

Bossmann will discuss his research at the American Chemical Society’s national meeting and exposition, Aug. 28 - Sept. 1, in Washington, D.C. He will give an oral presentation at the conference Tuesday, Aug. 30.

"We have more and more resistant strains developing in Asia and Russia. We’re also getting a large number of patients infected with TB immigrating to the United States," Bossmann said.

According to Bossmann, not many antibiotics actually work in treating TB because the disease has been steadily developing resistance to them. This makes new strategies for the delivery of drugs urgently needed, he said.

"It will become extremely difficult to treat cases of TB, in say 10 to 20 years down the road, because new treatment possibilities have not been developed," he said.

A "cocktail" consisting of a variety of drugs must be used to treat TB patients and they must be treated for several months, Bossmann said, but the problem with the conventional treatment is that microbacteria in TB grows slowly, helping it to evade the drugs.

"You might think this is a disadvantage, but it is not," Bossmann said. "The microbacteria has the talent to evade all of those medicines."

Mycobacterium TB has just a few pores in its outer walls which regulate basically all of its metabolics, Bossmann said. When the mycobacteria senses something dangerous like antibiotics, it simply closes the channel.

Bossmann’s research is targeting the channels.

"It is the only way for the cells to have an exchange with the outside world as far as we know: to block them and put complexes in which bond irreversibly within those channels, depriving the channels of any possibility to take nutrients in or to discharge waste from its metabolism," he said. "This approach can permanently deactivate TB so that the human immune system can deal with it."

Stefan H. Bossmann | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>