Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic nanoparticles for potential cancer treatment


Virginia Commonwealth University researchers have created highly magnetized nanoparticles based on metallic iron that could one day be used in a non-invasive therapy for cancer in which treatment would begin at the time of detection.

“We envision a potential for these materials to combine both detection and treatment into a single process,” said Everett E. Carpenter, Ph.D., an assistant professor of chemistry at VCU.

Carpenter is discussing his ongoing work of the synthesis and characterization of these functional magnetic nanoparticles for use in biomedical applications at the 2005 American Chemical Society National Meeting & Exposition in Washington, D.C., which began Aug. 28 and continues through Sept. 1.

More than 12,000 researchers from across the country are presenting new multidisciplinary research and highlighting important advances in biotechnology, nanoscience, nanotechnology, and defense and homeland security.

“Eventually, our goal is to use the scientific understanding of the growth mechanisms of these nanoparticles to develop materials for biomedical applications,” said Carpenter. “By engineering the magnetic properties of enhanced ferrites it is possible to develop materials for the treatment of various cancers, such as breast cancer.”

Carpenter and his team are working to determine how to best construct the core-shell structure and learn which shell materials are most ideal for biomedical applications such as magnetodynamic therapy (MDT), or as MRI contrast enhancement agents.

According to Carpenter, in the future it may be possible for a patient to be screened for breast cancer using MRI techniques with engineered enhanced ferrites as the MRI contrast agent. He said if a tumor is detected, the doctor could then increase the power to the MRI coils and localized heating would destroy the tumor region without damage to the surrounding healthy cells.

Another promising biomedical application is MDT, which employs magnetic nanoparticles that are coupled to the radio frequency of the MRI. This coupling converts the radio frequency into heat energy that kills the cancer cells. European researchers studying MDT have shown that nanoparticles are able to target tumor cells. Carpenter said that because the nanoparticles target tumor cells and are substantially smaller than human cells, only the very few tumor cells next to the nanoparticles are killed, which greatly minimizes damage to healthy cells.

“Our goal is to tailor the properties of the nanoparticles to make the use of MDT more universal,” said Carpenter. “The only thing slowing down the development of enhanced ferrites for 100 megahertz applications is a lack of understanding of the growth mechanisms and synthesis-property relationships of these nanoparticles.

“By studying the mechanism for the growth of the enhanced ferrites, it will be possible to create shells that help protect the metallic core from oxidation in biologically capable media,” he said.

Enhanced ferrites are a class of ferrites that are specially engineered to have enhanced magnetic or electrical properties and are created through the use of core-shell morphology. He said that in this approach the core can be a highly magnetic material like iron or iron alloys, while the shell can be a mixed metal ferrite with tailored resistivity.

“Ferrites (iron oxides) are used in many applications that require both a high magnetization and high electrical resistance; properties which are typically mutually exclusive,” said Carpenter. “These two properties are tied not only to the structure of the material but also to the way in which the material is synthesized and processed.”

Today, polymer encapsulated iron oxide particles are used in biomedical applications. However, Carpenter said that the high magnetization of the enhanced ferrite nanoparticles may potentially improve the absorption of the radio frequency, thereby providing better detection of tumor regions and the use of less MRI contrast re-agent.

In 2002, Carpenter invented a new material based on metallic iron. He said the magnetic power of the iron nanoparticles he created is 10 times greater than that of the currently available iron oxide nanoparticles, which translates to a substantial reduction in the amount of iron needed for imaging or therapy.

This work is supported by a grant from the American Cancer Society and the VCU Department of Chemistry.

Sathya Achia-Abraham | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>