Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew U.-Johns Hopkins study of nuclear envelope defects provides clues to dealing with human disease

31.08.2005


A step towards understanding cell mutations that cause a variety of human diseases, particularly in children -including that which brings about premature aging and early death - has been taken by researchers at the Hebrew University of Jerusalem Silberman Institute of Life Sciences and the John Hopkins University School of Medicine.



The scientists have focused their research on a study of induced mutations in the nuclear envelope of cells from the tiny C. elegans worm. Their aim is to thus provide clues towards a better understanding of mutations in proteins of the envelope of the cell nucleus in humans.

Such mutations, particularly in lamin (nuclear envelope) proteins A and C, cause many different diseases, including Hutchison Gilford progeria syndrome. Children with this disease develop premature aging and die usually before the age of 13. Other diseases brought about by these mutations include a form of muscular dystrophy, cardiomyopathy (a weakening of the heart muscle), and various other forms of irregular or retarded growth in childhood.


A report on the lamin research project was published in a recent issue of the Proceedings of the National Academy of Sciences in the U.S. The project was carried out primarily by Ayelet Margalit, a doctoral student in genetics at the Hebrew University, working under the supervision of Prof. Yosef Gruenbaum, and in cooperation with Prof. Katherine L. Wilson and Dr. Miriam Segura-Totten of Johns Hopkins University.

Experimenting with removal of the worm’s lamin protein or its interacting protein partners emerin, MAN1 or BAF, the researchers have described “down-the-line” consequences, including the disruption of various proteins necessary for normal cell reproduction. Even though the C. elegans worm has only one lamin protein and few proteins that interact with it, the processes that occur there are similar to what happens in humans and provide clues to the laminopathic diseases affecting people..

The results seen from these lamin complex disruptions are a halted process of cell division, resulting in a static “bridge” structure between cells that should have separated, plus damage to the gonad cell structure. In both cases, the ability of the organism to grow and to reproduce is severely impaired.

The researchers hope that through further laboratory experimentation with the worm they will be able to better understand the functions of lamin-based complexes, and why mutations in these proteins cause a variety of different laminopathic diseases, such as progeria and muscular dystrophy in humans.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>