Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool to study elusive DNA structure could help reveal better understanding of cancer, diabetes

30.08.2005


A Rensselaer researcher has developed a new tool to help unravel the function of an elusive DNA structure. The findings, which were presented today at the 230th national meeting of the American Chemical Society (ACS) in Washington, D.C., could lead to a better understanding of diseases such as cancer and diabetes.



The standard version of the human genome is a double-stranded helix of complementary bases: adenine binds to thymine and cytosine binds to guanine. "Our focus is on a different type of DNA structure, the ’G-quartet,’ that arises from hydrogen bonds between guanines only," says Linda McGown, professor and chair of the Department of Chemistry and Chemical Biology at Rensselaer Polytechnic Institute.

Scientists have long speculated about the existence of these G-quartets, as well as the role they might play in the human body, but direct evidence has remained elusive. To help answer these questions, McGown and her students at Rensselaer and Duke University have been examining this unusual structure, which is a rectangular array of four guanines, each hydrogen-bonded to its two nearest neighbors.


McGown has developed a "directed proteomic" strategy to compare G-quartet protein-binding profiles in different populations of cells. "This is essentially a fishing experiment using hooks comprised of G-quartet-forming sequences from the DNA genome, in hopes of catching proteins that might bind to such structures in the human nucleus," she says. McGown recently discovered that insulin binds to a G-quartet formed by a sequence that occurs in the insulin promoter gene.

"The possibility that insulin may participate in its own regulation is intriguing, and adds to the growing evidence relating G-quartet formation and diabetes," she says. She plans to apply her technique to G-quartet-forming sequences that occur in other regions of human chromosomes and have been implicated in cancer, aging, and genetic diseases. Her goal is to increase understanding of the role of G-quartets in health and disease, leading to the identification of new biomarkers and medical therapies.

McGown is one of 18 Rensselaer researchers presenting at the ACS meeting in Washington, along with Rensselaer President Shirley Ann Jackson, who will be speaking at a special event celebrating the 10th anniversary of the ACS Scholars Program. Her talk will focus on the urgent need to build the next generation of scientists, which she asserts requires fostering a national plan and a national will to succeed.

McGown’s presentation, "Detection of cellular proteins using genomic-inspired DNA," took place at 3:45 p.m. on Monday, Aug. 29, in room 152B of the Washington Convention Center.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>