Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool to study elusive DNA structure could help reveal better understanding of cancer, diabetes

30.08.2005


A Rensselaer researcher has developed a new tool to help unravel the function of an elusive DNA structure. The findings, which were presented today at the 230th national meeting of the American Chemical Society (ACS) in Washington, D.C., could lead to a better understanding of diseases such as cancer and diabetes.



The standard version of the human genome is a double-stranded helix of complementary bases: adenine binds to thymine and cytosine binds to guanine. "Our focus is on a different type of DNA structure, the ’G-quartet,’ that arises from hydrogen bonds between guanines only," says Linda McGown, professor and chair of the Department of Chemistry and Chemical Biology at Rensselaer Polytechnic Institute.

Scientists have long speculated about the existence of these G-quartets, as well as the role they might play in the human body, but direct evidence has remained elusive. To help answer these questions, McGown and her students at Rensselaer and Duke University have been examining this unusual structure, which is a rectangular array of four guanines, each hydrogen-bonded to its two nearest neighbors.


McGown has developed a "directed proteomic" strategy to compare G-quartet protein-binding profiles in different populations of cells. "This is essentially a fishing experiment using hooks comprised of G-quartet-forming sequences from the DNA genome, in hopes of catching proteins that might bind to such structures in the human nucleus," she says. McGown recently discovered that insulin binds to a G-quartet formed by a sequence that occurs in the insulin promoter gene.

"The possibility that insulin may participate in its own regulation is intriguing, and adds to the growing evidence relating G-quartet formation and diabetes," she says. She plans to apply her technique to G-quartet-forming sequences that occur in other regions of human chromosomes and have been implicated in cancer, aging, and genetic diseases. Her goal is to increase understanding of the role of G-quartets in health and disease, leading to the identification of new biomarkers and medical therapies.

McGown is one of 18 Rensselaer researchers presenting at the ACS meeting in Washington, along with Rensselaer President Shirley Ann Jackson, who will be speaking at a special event celebrating the 10th anniversary of the ACS Scholars Program. Her talk will focus on the urgent need to build the next generation of scientists, which she asserts requires fostering a national plan and a national will to succeed.

McGown’s presentation, "Detection of cellular proteins using genomic-inspired DNA," took place at 3:45 p.m. on Monday, Aug. 29, in room 152B of the Washington Convention Center.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>