Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus helps tall fescue choke out native plants

30.08.2005


Bitter-tasting fescue takes over more quickly with help of plant-eating bugs, animals



New research by biologists at Rice University, Indiana University and George Mason University reveals how some non-native fescue grass gets a leg up over competing native plants: it’s passed over by plant-eating insects and animals because its leaves are laced with toxic alkaloids, thanks to a symbiotic fungus that has co-evolved with the grass.

In a 54-month study conducted at Indiana University, scientists showed that ’tall fescue,’ a common variety that is infected with the symbiotic fungus Neotyphodium coenophialum, tended to choke out uninfected fescue and native plant species. Tall fescue took over test plots much more quickly when herbivores had full access.


The research appears in the Aug. 30 issue of the Proceedings of the National Academy of Science.

"The practical implications of our findings are that the more herbivores there are in an area, the more likely it will be that infected tall fescue grass will spread and suppress native plants," said co-author Jennifer Rudgers, now an assistant professor of ecology and evolutionary biology at Rice.

Fescue, which is native to the Mediterranean, covers an estimated 37 million U.S. acres. It is cultivated for grazing and is often used as turf grass on lawns, golf courses and highway rights-of-way. Ranchers do not typically cultivate tall fescue because the symbiotic fungus it carries, known as an endophyte, produces alkaloids that have negative health effects for livestock. It is estimated that 80 percent of U.S. fescue is endophyte-infected, and in some applications, like turf grass, it’s the preferred variety.

Prior research on hereditary plant symbionts like the fescue endophyte have tended to look at plant-fungal pairings in isolation. Rudgers said she, post-doc advisor Keith Clay of Indiana University, and co-author Jenny Holah of George Mason University sought to get a more realistic picture of the ecological effects of symbiosis.

"We wanted to find out how the surrounding community affected the relationship between its host and its symbiont," she said. "The implications of the research are broad because it’s estimated that similar fungal symbionts exist in more than 20 percent of native U.S. grasses."

The tall fescue study was conducted on 60 plots near Bloomington, Ind., that measured 25 square meters apiece. At the start of the 4.5-year study, the land was plowed and planted with fescue seeds that sprouted alongside native grasses. Half of the seeds were tall fescue, which carries the fungal symbiont, and half did not carry the symbiont. The fungus is not transmitted by insects or wind and is only found in plants that sprout from infected seeds.

Half of the test plots were fenced to keep out foraging animals, and half of the unfenced and fenced plots were sprayed with an insecticide to suppress insect herbivores. Tall fescue progressed most slowly in plots that were both sprayed and fenced, constituting about 50 percent of live plant mass in the plots by study’s end. In unfenced and unsprayed plots, tall fescue faired best, contributing to 75 percent of the plot by study completion.

"Importantly, we found that more fescue in the unsprayed and unfenced plots was endophyte-infected compared to the plots with herbivore-reduction treatments," said Rudgers "This is significant because it shows that the herbivores actually drive an increase in the relative abundance of infected plants."

In follow-up studies, Rudgers plans to see how tall fescue fares against competitors under drought and non-drought conditions, and she also plans to study symbiotic relationships in native grasses, including some Texas species.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>