Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus helps tall fescue choke out native plants

30.08.2005


Bitter-tasting fescue takes over more quickly with help of plant-eating bugs, animals



New research by biologists at Rice University, Indiana University and George Mason University reveals how some non-native fescue grass gets a leg up over competing native plants: it’s passed over by plant-eating insects and animals because its leaves are laced with toxic alkaloids, thanks to a symbiotic fungus that has co-evolved with the grass.

In a 54-month study conducted at Indiana University, scientists showed that ’tall fescue,’ a common variety that is infected with the symbiotic fungus Neotyphodium coenophialum, tended to choke out uninfected fescue and native plant species. Tall fescue took over test plots much more quickly when herbivores had full access.


The research appears in the Aug. 30 issue of the Proceedings of the National Academy of Science.

"The practical implications of our findings are that the more herbivores there are in an area, the more likely it will be that infected tall fescue grass will spread and suppress native plants," said co-author Jennifer Rudgers, now an assistant professor of ecology and evolutionary biology at Rice.

Fescue, which is native to the Mediterranean, covers an estimated 37 million U.S. acres. It is cultivated for grazing and is often used as turf grass on lawns, golf courses and highway rights-of-way. Ranchers do not typically cultivate tall fescue because the symbiotic fungus it carries, known as an endophyte, produces alkaloids that have negative health effects for livestock. It is estimated that 80 percent of U.S. fescue is endophyte-infected, and in some applications, like turf grass, it’s the preferred variety.

Prior research on hereditary plant symbionts like the fescue endophyte have tended to look at plant-fungal pairings in isolation. Rudgers said she, post-doc advisor Keith Clay of Indiana University, and co-author Jenny Holah of George Mason University sought to get a more realistic picture of the ecological effects of symbiosis.

"We wanted to find out how the surrounding community affected the relationship between its host and its symbiont," she said. "The implications of the research are broad because it’s estimated that similar fungal symbionts exist in more than 20 percent of native U.S. grasses."

The tall fescue study was conducted on 60 plots near Bloomington, Ind., that measured 25 square meters apiece. At the start of the 4.5-year study, the land was plowed and planted with fescue seeds that sprouted alongside native grasses. Half of the seeds were tall fescue, which carries the fungal symbiont, and half did not carry the symbiont. The fungus is not transmitted by insects or wind and is only found in plants that sprout from infected seeds.

Half of the test plots were fenced to keep out foraging animals, and half of the unfenced and fenced plots were sprayed with an insecticide to suppress insect herbivores. Tall fescue progressed most slowly in plots that were both sprayed and fenced, constituting about 50 percent of live plant mass in the plots by study’s end. In unfenced and unsprayed plots, tall fescue faired best, contributing to 75 percent of the plot by study completion.

"Importantly, we found that more fescue in the unsprayed and unfenced plots was endophyte-infected compared to the plots with herbivore-reduction treatments," said Rudgers "This is significant because it shows that the herbivores actually drive an increase in the relative abundance of infected plants."

In follow-up studies, Rudgers plans to see how tall fescue fares against competitors under drought and non-drought conditions, and she also plans to study symbiotic relationships in native grasses, including some Texas species.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>