Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting anthrax proteins at ultralow concentrations

30.08.2005


A new laboratory method for quickly detecting active anthrax proteins within an infected blood sample at extremely low levels has been developed by researchers at the National Institute of Standards and Technology (NIST), the U.S. Army Medical Research Institute of Infectious Diseases and the National Cancer Institute.


A computer model shows side and top views of two different proteins produced by anthrax bacteria. The green molecule is "protective antigen" (PA), which spontaneously forms pores that penetrate organic membranes such as cell walls. The yellow molecule is "lethal factor (LF)." When a voltage is applied across a membrane studded with PA pores, both positive and negative ions flow through. Once LF binds to the pore, however, current only flows in one direction. Image credit: T. Nguyen, National Cancer Institute



Current detection methods rely on injecting live animals or cell cultures with samples for analysis and require up to several days before results are available. Described* in an upcoming issue of the Journal of Biological Chemistry, the new method produces unambiguous results in about an hour. The researchers hope the system will ultimately be useful in developing fast, reliable ways to diagnose anthrax infections or to quickly screen large numbers of drugs as possible therapies for blocking the bacteria’s toxic effects.

The method works by detecting changes in current flow when anthrax proteins are present in a solution. An anthrax protein ironically called "protective antigen" spontaneously forms nanometer-scale pores that penetrate the surface of an organic membrane. When a voltage is applied across the membrane, positively and negatively charged ions flow freely in both directions through the pore. When additional anthrax proteins called lethal factor (LF) or edema factor (EF) are present, however, the proteins bind to the outside of the pore and shut down the flow of ions in one direction. This change in current flow depends on the concentration of the proteins in the solution and can detect amounts as low as 10 picomolar (trillionths of a mole).


"We hope this system will lead to a method for rapidly screening agents that inhibit the binding of LF or EF to these pores," says NIST’s lead investigator John Kasianowicz.

Live anthrax antibodies seem to do exactly that. When antibodies were present in the test solution and then LF was added, the current flow remained unchanged, indicating that the anthrax proteins were unable to bind properly. The long-term goal would be to find drugs with few side effects that also interfere with this binding process.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>