Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting anthrax proteins at ultralow concentrations

30.08.2005


A new laboratory method for quickly detecting active anthrax proteins within an infected blood sample at extremely low levels has been developed by researchers at the National Institute of Standards and Technology (NIST), the U.S. Army Medical Research Institute of Infectious Diseases and the National Cancer Institute.


A computer model shows side and top views of two different proteins produced by anthrax bacteria. The green molecule is "protective antigen" (PA), which spontaneously forms pores that penetrate organic membranes such as cell walls. The yellow molecule is "lethal factor (LF)." When a voltage is applied across a membrane studded with PA pores, both positive and negative ions flow through. Once LF binds to the pore, however, current only flows in one direction. Image credit: T. Nguyen, National Cancer Institute



Current detection methods rely on injecting live animals or cell cultures with samples for analysis and require up to several days before results are available. Described* in an upcoming issue of the Journal of Biological Chemistry, the new method produces unambiguous results in about an hour. The researchers hope the system will ultimately be useful in developing fast, reliable ways to diagnose anthrax infections or to quickly screen large numbers of drugs as possible therapies for blocking the bacteria’s toxic effects.

The method works by detecting changes in current flow when anthrax proteins are present in a solution. An anthrax protein ironically called "protective antigen" spontaneously forms nanometer-scale pores that penetrate the surface of an organic membrane. When a voltage is applied across the membrane, positively and negatively charged ions flow freely in both directions through the pore. When additional anthrax proteins called lethal factor (LF) or edema factor (EF) are present, however, the proteins bind to the outside of the pore and shut down the flow of ions in one direction. This change in current flow depends on the concentration of the proteins in the solution and can detect amounts as low as 10 picomolar (trillionths of a mole).


"We hope this system will lead to a method for rapidly screening agents that inhibit the binding of LF or EF to these pores," says NIST’s lead investigator John Kasianowicz.

Live anthrax antibodies seem to do exactly that. When antibodies were present in the test solution and then LF was added, the current flow remained unchanged, indicating that the anthrax proteins were unable to bind properly. The long-term goal would be to find drugs with few side effects that also interfere with this binding process.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>