Killer microbe may be a lifesaver after all

Advances in the molecular modeling and simulation of complex biological systems are enabling researchers to study how certain microbial systems may play an important role in the remediation of contaminated soils. One target is Pseudomonas aeruginosa, a common microbe in sediments and the subsurface. This bacterium is also an important opportunistic pathogen that can cause fatal infections in people with a weakened immune systems.

T.P. Straatsma is leading a team of researchers modeling the lipopolysaccharide outer membrane of P. aeruginosa to learn how the membrane responds to its environment. This research is addressing the question of how this microbe adsorbs to mineral surfaces and what the mechanism is for the uptake and reduction of heavy metals. This has signifi cant implications for bioremediation applications if these metals are radioactive and are reduced to insoluble form to prevent further spreading of the contamination.

In another project, the team also is addressing the health related issues concerning this microbe. Again focusing on the outer membrane, Straatsma and his coworkers are studying the role of a range of proteins embedded in the membrane, as well as the mechanism of action of certain antibiotics that are effective in treating P. aeruginosa infections that plague cystic fi brosis patients, burn victims and patients with compromised immune systems.

Media Contact

Brenda Pittsley EurekAlert!

More Information:

http://www.pnl.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors