Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual antibiotics show promise against deadly ’superbugs’

30.08.2005


An unusual type of antibiotic being developed by chemists at Notre Dame University shows promise in defeating deadly "superbugs" — highly drug-resistant staph bacteria that are an increasing source of hospital-based infections. The novel antibiotics, which could some day save lives, were described today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.



The new antibiotics are synthetic forms of cephalosporin, a broad-spectrum antibiotic closely related to penicillin. They appear to kill bacteria by masquerading as components of the bacterial cell wall in order to deactivate an enzyme that functions as a key bacterial defense mechanism, the researchers say. In preliminary lab tests, the new antibiotics — the first to exhibit this mimicry mechanism — were effective against vancomycin-resistant MRSA, a rare but extremely deadly staph strain for which treatment options are extremely limited, they say.

"We are the first to demonstrate this unique strategy, which could provide a new line of defense against the growing problem of antibiotic resistance," says study leader Shahriar Mobashery, Ph.D., a chemist at the university. "As scientists, we’re trying to stay one step ahead of the bacteria. The more strategies there are to fight resistance, the better."


Besides fighting staph bacteria, the compounds have the potential to work against a wide range of other types of infectious bacterial strains that appear in health-care and community settings, he says. At least one of the cephalosporin compounds identified has entered Phase I clinical trials (human studies), but results are not yet available. More studies are needed before it can be marketed, Mobashery and his associates say.

MRSA (methicillin-resistant Staphylococcus aureus) was first identified in the early 1960s and has become a difficult superbug to tame. While searching for strategies to defeat it, Mobashery’s research group focused on an enzyme called penicillin-binding protein 2a (PBP 2a), which is unique to MRSA. Research by others showed that the enzyme, located on the bacterial cell membrane, acts as a key defense mechanism by helping the bug maintain a chemical barricade that is impervious to antibiotics.

Mobashery’s group recently discovered, in a study published in the Feb. 16 issue of the Journal of the American Chemical Society, that the enzyme interacts with certain components of the bacterial cell wall and that targeting these components might deactivate the enzyme, making the bacteria vulnerable to attack. Subsequently, the group identified a set of three novel cephalosporin antibiotics that appear to interact with the enzyme and also contain protein components that are similar to those of the bacterial cell wall.

The researchers then added the antibiotics to vancomycin-resistant MRSA and compared the results to those of another set of antibiotics belonging to a similar drug class (beta-lactams). The new antibiotics killed the bacteria, whereas the others did not, they say.

Based on lab studies, Mobashery believes that the novel antibiotics gained access to the enzyme’s active site by mimicking chemical components of the bacterial cell wall, which is largely composed of a polymer called peptidoglycan. Upon contact with the cell wall components, the antibiotics appear to trigger the enzyme to open. Once open, the antibiotics deactivate the enzyme, setting in motion a chain of events that eventually kills the bacteria, the researcher says.

More studies are needed to verify the details of this unique mechanism and to determine whether this mechanism is used by other antibiotics, he adds. So far, only three antibiotics — all of them cephalosporin derivatives — appear to function by this mimicry mechanism, says Mobashery, whose study was funded by the National Institutes of Health.

Antibiotic resistance is a persistent problem today, stemming largely from the overuse of antibiotics. Careful handwashing and other sanitation practices are considered a key to preventing the spread of MRSA and other hospital-based infections, according to the Centers for Disease Control and Prevention.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org
http://www.chemistry.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>