Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel compounds show promise as safer, more potent insecticides

29.08.2005


Research teams at Nihon Nohyaku Co., Ltd., Bayer CropScience and DuPont have developed two new classes of broad-spectrum insecticides that show promise as a safer and more effective way to fight pest insects that damage food crops. The insecticides, which represent the first synthetic compounds designed to activate a novel insecticide target called the ryanodine receptor, may also help tackle the growing problem of insecticide resistance, the researchers say. They described their studies today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.

Many of the most widely used insecticides today act on only a handful of exploited targets, including the organophosphates, which block acetylcholinesterase, an enzyme that helps control nerve activity. Some experts are concerned that these older, less-selective insecticides could pose heath risks and there’s a growing effort underway to find safer replacements.

Targeting the ryanodine receptor may offer a promising alternative, researchers say. Ryanodine, a natural alkaloid discovered years ago in a species of tropical plant, has been used to study muscle physiology in a wide variety of organisms, including insects and mammals. Ryanodine receptors regulate muscle and nerve activities by modifying levels of internal calcium in these cells. These receptors exist in both mammals and insects but have distinct differences. Researchers have known that ryanodine itself has insecticidal properties, but no synthetic molecules had previously been identified that potently and selectively target these receptors in insects, until now.



Nihon Nohyaku Co., Ltd., based in Japan, and Bayer CropScience AG in Germany have jointly developed Flubendiamide, the first example of the phthalic acid diamides, a novel class of insecticides that activate the ryanodine receptor. The insecticide is highly effective against many different species of caterpillars, says Masanori Tohnishi, a senior research scientist at Nihon Nohyaku. In early tests, the compound showed high activity against the tobacco budworm (Heliothis virescens), which is known to cause serious damage to cotton, tobacco and other crops, the researchers say. The compound did not have any measurable effect on mammalian ryanodine receptors, according to Peter Lümmen, Ph.D., a research scientist at Bayer CropScience.

DuPont, based in Wilmington, Del., is developing another group of compounds that target the ryanodine receptor. Called anthranilic diamides, these novel compounds show excellent control of pest insects with exceptional mammalian safety, according to the researchers. They were the first to demonstrate the mode of action of these ryanodine receptor-active molecules, says Daniel Cordova, a researcher at DuPont Crop Protection.

Both classes of compounds are believed to have high potency, the researchers say, although they are structurally different. Both insecticides are still in developmental stages.

The research team at DuPont says they have cloned ryanodine receptors from several insect species and that these receptors may help provide a better understanding of their role in calcium signaling, which could lead to new insights into human diseases.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>