Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create DNA buckyballs for drug delivery, demonstrating use of synthetic DNA as building blocks

29.08.2005


Provided
A scanning electron microscope photo of a self-assembled DNA buckyball.


Provided
DNA strands designed with complementary sequences of bases will bind to one another to form Y-shaped structures that can be extended to form "dendrimerlike" (i.e., treelike) forms.


DNA isn’t just for storing genetic codes any more. Since DNA can polymerize -- linking many molecules together into larger structures -- scientists have been using it as a nanoscale building material, constructing geometric shapes and even working mechanical devices.

Now Cornell University researchers have made DNA buckyballs -- tiny geodesic spheres that could be used for drug delivery and as containers for chemical reactions.

The term "buckyballs" has been used up to now for tiny spherical assemblies of carbon atoms known as Buckminsterfullerenes or just fullerenes. Under the right conditions, carbon atoms can link up into hexagons and pentagons, which in turn assemble into spherical shapes (technically truncated icosahedrons) resembling the geodesic domes designed by the architect-engineer Buckminster Fuller. Instead of carbon, the Cornell researchers are making buckyballs out of a specially prepared, branched DNA-polystyrene hybrid. The hybrid molecules spontaneously self-assemble into hollow balls about 400 nanometers (nm) in diameter. The DNA/polystyrene "rods" forming the structure are each about 15 nm long. (While still on the nanoscale, the DNA spheres are much larger than carbon buckyballs, which are typically around 7 nm in diameter.)



About 70 percent of the volume of the DNA buckyball is hollow, and the open spaces in the structure allow water to enter. Dan Luo, Cornell assistant professor of biological and environmental engineering in whose lab the DNA structures were made, suggests that drugs could be encapsulated in buckyballs to be carried into cells, where natural enzymes would break down the DNA, releasing the drug. They might also be used as cages to study chemical reactions on the nanoscale, he says.

The nanoscale, hollow buckyballs are also the first structures assembled from "dendrimerlike DNA." If three strands of artificial DNA are created such that portions of each strand are complementary to portions of another, the three strands will bind to each other over the complementary portions, creating a Y-shaped molecule. By joining several Y’s in the same way, Luo’s research group created molecules with several arms, a sort of tree shape (dendri- means tree in Greek). Then they attached polystyrene molecules to the dendrimerlike DNA forming a hybrid molecule called an amphiphile -- a molecule that both likes and hates water. DNA is hydrophillic -- attracted to water -- while polystyrene is hydrophobic -- water repels it.

The researchers expected the amphiphiles to assemble in water into some sort of solid structure arranged so that DNA would have a maximum interaction with water and polystyrene would avoid water as much as possible. Other researchers have used other amphiphiles to make spheres, rods and other solids. The hollow buckyballs were an intriguing and serendipitous surprise. A model suggests that one buckyball consists of about 19,000 amphiphiles, with their water-loving DNA mostly on the outside of the rods that form the structure. How these tens of thousands of molecules were able to self-organize to form such an intricate and complex structure is still an open question, the researchers say. They are seeking collaborators to solve the puzzle.

Luo and Ph.D. graduate students Soong Ho Um, Sang Yeon Kwon and Jong Bum Lee described DNA buckyballs in an invited talk titled "Self-assembly of nanobuckyballs from dendrimer-like-DNA-polystyrene amphiphiles" Sunday, Aug. 28, at the 2005 annual meeting of the American Chemical Society in Washington, D.C. They reminded the audience that although the geometry of solid truncated icosahedrons was first described by Archimedes on paper more than 2,000 years ago, the skeletal, hollow-faced version of buckyballs had not been envisioned until Leonardo da Vinci’s illustrations in 1494.

Luo added that DNA buckyballs may turn out to have unusual electronic, photonic and mechanical properties, and that because DNA is easily labeled and manipulated, his research group’s work offers a way to study in detail the self-assembly process -- a process very important to the future development of nanotechnology.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>