Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green catalyst destroys pesticides and munitions toxins

29.08.2005


Results reported at American Chemical Society meeting



A chemical catalyst developed at Carnegie Mellon University completely destroys dangerous nitrophenols in laboratory tests, according to Arani Chanda, a doctoral student who is presenting his findings on Sunday, Aug. 28, at the 230th meeting of the American Chemical Society (ACS) in Washington, D.C. (Division of Industrial and Engineering Chemistry, Convention Center Hall A).

"We found an efficient, rapid and environmentally friendly means of completely destroying these compounds," said Chanda, who works in the laboratory of Terrence Collins, the Thomas Lord Professor of Chemistry and director of the Institute for Green Oxidation Chemistry at the Mellon College of Science (MCS) at Carnegie Mellon.


Nitrophenols are man-made pollutants that mostly originate from wastewater discharges from the dye, pesticide and ammunition industries as well as from various chemical-manufacturing plants. They are also found in diesel exhaust particles. Thousands of tons of these agents are produced yearly by countries around the world. Registered as priority pollutants by the EPA, they are toxic to aquatic life. They produce immediate toxic effects to the nervous system, and some reports have implicated them as possible endocrine disruptors. Many of these compounds cannot be destroyed by existing means.

The catalyst, one of a family of catalysts called Fe-TAML®s (TAML stands for tetra-amido macrocyclic ligand), works with hydrogen peroxide. Its "green" design is based on elements used naturally in biochemistry. Fe-TAMLs were discovered by Collins, whose group has developed an extensive suite of these catalysts to provide clean, safe alternatives to existing industrial practices, as well as ways to remediate other pressing problems that currently lack solutions.

"Fe-TAMLs are much easier to use in destroying nitrophenols because they work at ambient temperatures and neutral pH," said Collins. "Existing detoxification methods are inefficient and work only under acidic conductions. Our method can be used over a much broader pH range, including wastewater pH conditions."

Fe-TAMLs already have shown promise in killing a simulant of a biological warfare agent (anthrax), reducing fuel pollutants, treating pulp and paper processing byproducts, and detoxifying pesticides. A major goal is to develop Fe-TAMLs as a safe, cost-effective means of global water decontamination.

Collins and other members of his laboratory are presenting additional findings about Fe-TAMLs during these sessions at the 230th ACS meeting:

"TAML green oxidation catalysis for safely destroying pollutants and microbes in water," oral presentation by Terrence Collins, INOR 265, Strategies and Molecular Mechanisms of Contaminant Degradation Chemistry, 2 p.m. Monday, Aug. 29, Convention Center 147B;

"Micellar regulation of the activity of Fe-TAML® activators of peroxides in aqueous solutions," poster presentation by Deboshri Banerjee, I&EC 11, 8 p.m. Sunday, Aug. 28, Convention Center, Hall A.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>