Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel plague virulence factor identified

29.08.2005


Researchers at Duke University Medical Center have identified a previously unknown family of virulence factors that make the bacterium responsible for the plague especially efficient at killing its host.



In the process, the team not only demonstrated that the use of the common roundworm is a valid model for studying the virulence of Yersinia pestis, the bacterium that causes plague. They also showed that the interaction between Y. pestis and the worm is quite similar to what occurs in mammals, including humans. The work indicates that the pathogen may use similar virulence mechanisms to infect evolutionary disperse organisms.

These findings are important, the researchers continued, since the pathogenesis system using the Caenorhabditis elegans worm can accelerate the process of better understanding Y. pestis pathogenesis. The shorter time and increased ease of experimentation can be especially important, the researchers continued, given potential use of Y. pestis as a biological weapon, they said.


The results of the Duke research will appear Aug. 26, 2005, in the on-line edition of European Molecular Biology Organization (EMBO) Reports to be published in print in October. The research was supported by the National Institutes of Health’s National Institute of General Medical Science, the Southeast Regional Center for Emerging Infections and Biodefense (SERCEB) and the Duke Center for Translational Research.

"Our experiments have demonstrated how closely the Y. pestis-C. elegans model we developed mimics what happens when Y. pestis infects mammals," said Duke microbiologist Alejandro Aballay, Ph.D., lead researcher of the team. "This system should help speed the characterization of both pathogen and host functions that potentially can be targeted for intervention."

The Y. pestis bacterium primarily infects wild rodents, such as mice, rats and squirrels. It is usually transmitted by fleas, which spread the infection as they feed on the blood of mammals. There are different forms of plague in humans -- bubonic, pneumonic and septicemic -- depending on site of infection; and infections in humans are highly lethal if not immediately treated.

"Dr Aballay has developed a new model for dissecting the ways pathogens such as the plague can infect and kill their hosts," said Pamela Marino, Ph.D., scientist at the National Institute of General Medical Science. "This creative approach should improve our ability to develop new medicines to treat such diseases."

Aballay has used the C. elegans, a worm commonly found in the soil, as a model to study the virulence mechanisms of other bacteria besides plague. The worm is an ideal model for genetic studies, he said, because it takes only three days to develop from an embryo to an adult capable of reproducing. Also, scientists can easily manipulate specific genes in the worm, and in contrast to other animal models, large quantities of the worms can be grown quickly and can even be frozen and used later.

"C elegans lives in the soil, so it continually comes into contact with bacteria and other microbes," Aballay said. "It has a highly developed system for not only recognizing bacteria, but also responding to them. The ability of its innate immune system to respond appropriately to specific bacteria is very similar to that of mammals."

Aballay tested Y. pestis in his model because another research team recently reported that the bacterium killed C. elegans by creating a "biofilm" over the worm’s pharynx, causing it to die of starvation. Since mammals infected with Y. pestis do not die in this manner, Aballay believed that other virulence factors were involved in infecting the worm.

"We thought that a Y. pestis strain (known as KIM5) that lacks the genes (hmsHFRS operon) required for biofilm formation could still enter the worm’s digestive system and eventually kill it by using a method different from food blockage," Aballay explained. "We did in fact show that as Y. pestis lacking the hmsHFRS operon accumulated in the intestine causing a persistent and lethal infection."

The researchers then screened a library of almost 1,000 Y. pestis mutants and found that six virulence factors are crucial for the bacterium to have full virulence. Of the six virulence factors, three are also required for infections in mammals. One of these factors is similar to an exported protein of Salmonella enterica. In a study http://www.dukemednews.org/news/article.php?id=7647 published last year, Abalallay showed that Salmonella uses similar virulence factors to infect both mammals and C. elegans.

"The protein produced by this new Y. pestis virulence-related gene belongs to a family of uncharacterized proteins found exclusively in pathogenic enterobacteria," Aballay said. "This work links for the first time this particular family of bacterial proteins to virulence and we have done so by using a C. elegans pathogenesis system and a new mouse model of plague."

Aballay said that these types of conserved virulence factors may regulate innate immunity in a broad variety of hosts, including C. elegans, fleas and mammals.

"The importance of our work is that it will permit us to use a model whose genetics can be easily manipulated as a viable alternative not only for the identification of novel Y. pestis virulence factors but also to study conserved innate immune responses to the bacterium," Aballay said. "This may help us in developing strategies to protect humans from the plague."

Since the KIM5 strain of Y. pestis is well characterized and has a lower biosafety ranking than other infectious or toxic agents, Aballay believes that it will much easier for research laboratories to conduct research on virulence and innate immunity.

Other members of the research team were Duke’s Katie Styer, Gregory Hopkins, and Richard Frothingham, as well as Sara Schessar Bartra and Gregory Plano, University of Miami School of Medicine.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>