Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species evolve to the brink of evolution

29.08.2005


A biologist at The University of Texas at Austin has presented a new theory that sheds light on how organisms, including viruses like HIV, rapidly evolve in the face of vaccines and antibiotics.



Dr. Lauren Ancel Meyers says the new model could help identify genes that increase a pathogen’s ability to evolve quickly against immune responses. Knowing those genes could help scientists develop new and better vaccines.

Meyers’ model predicts that populations can evolve “genetic potential”—genes that can create new traits quickly and simply in changing environments.


“In fluctuating environments, you may get populations evolving right to the brink of evolution,” says Meyers. The organisms are poised to evolve in the face of environmental shifts, because they have genes that can produce a new trait essential to their survival with one or two simple mutations.

Meyers’ model for rapid evolution appears in the Aug. 26 issue of the journal PLoS Computational Biology.

Genetic mutations create the variation that natural selection acts upon. But mutations can be disadvantageous or even deadly, so organisms have evolved so that most simple mutations have little or no biological impact. Mutations are buffered by repair mechanisms and redundancies, like other genes that perform the same function.

For organisms constantly facing new challenges in ever-changing environments, however, there’s an advantage to creating new traits quickly. Previous explanations of rapid evolution have focused on the rate at which mutations occur in the genome. These theories suggest that populations can evolve new traits faster if they are hypermutable, that is, they have faster rates of mutation.

Meyers’ idea is significantly different, because it shows populations can adapt quickly without a faster rate of genetic mutation. Instead, the populations evolve genes that can be easily altered to create new traits.

“Evolution can accelerate without changing the mutation rate itself—it’s the evolution of the ability to evolve—that’s the novel insight of this work,” says Meyers.

Meyers is an assistant professor in the Section of Integrative Biology with a faculty position at the Santa Fe Institute. Co-authors on the paper include Meyers’ father, Dr. Fredric Ancel, from the University of Wisconsin-Milwaukee, and Dr. Michael Lachmann, of the Max Planck Institute in Leipzig, Germany.

Lauren Ancel Meyers | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>