Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Species evolve to the brink of evolution


A biologist at The University of Texas at Austin has presented a new theory that sheds light on how organisms, including viruses like HIV, rapidly evolve in the face of vaccines and antibiotics.

Dr. Lauren Ancel Meyers says the new model could help identify genes that increase a pathogen’s ability to evolve quickly against immune responses. Knowing those genes could help scientists develop new and better vaccines.

Meyers’ model predicts that populations can evolve “genetic potential”—genes that can create new traits quickly and simply in changing environments.

“In fluctuating environments, you may get populations evolving right to the brink of evolution,” says Meyers. The organisms are poised to evolve in the face of environmental shifts, because they have genes that can produce a new trait essential to their survival with one or two simple mutations.

Meyers’ model for rapid evolution appears in the Aug. 26 issue of the journal PLoS Computational Biology.

Genetic mutations create the variation that natural selection acts upon. But mutations can be disadvantageous or even deadly, so organisms have evolved so that most simple mutations have little or no biological impact. Mutations are buffered by repair mechanisms and redundancies, like other genes that perform the same function.

For organisms constantly facing new challenges in ever-changing environments, however, there’s an advantage to creating new traits quickly. Previous explanations of rapid evolution have focused on the rate at which mutations occur in the genome. These theories suggest that populations can evolve new traits faster if they are hypermutable, that is, they have faster rates of mutation.

Meyers’ idea is significantly different, because it shows populations can adapt quickly without a faster rate of genetic mutation. Instead, the populations evolve genes that can be easily altered to create new traits.

“Evolution can accelerate without changing the mutation rate itself—it’s the evolution of the ability to evolve—that’s the novel insight of this work,” says Meyers.

Meyers is an assistant professor in the Section of Integrative Biology with a faculty position at the Santa Fe Institute. Co-authors on the paper include Meyers’ father, Dr. Fredric Ancel, from the University of Wisconsin-Milwaukee, and Dr. Michael Lachmann, of the Max Planck Institute in Leipzig, Germany.

Lauren Ancel Meyers | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>