Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian-based research team finds the malaria parasite’s ’housebreaking tool’

29.08.2005


Plasmodium falciparum, the most lethal malaria parasite, is a housebreaking villain of the red blood cell world. Like a burglar searching for a way in to his targeted premises, the parasite explores a variety of potential entry points to invade the red blood cells of its human victims. When a weak point is found, the intrusion proceeds.



Scientists have known about the parasite’s housebreaking habit for a decade, but just how it breaks in to blood cells has been unknown.

Now, an international team of scientists, led by WEHI’s Professor Alan Cowman, has discovered the gene - known as PfRh4 - that the parasite uses as a tool to switch between potential invasion points. More specifically, the gene provides the parasite with the ability to switch from receptors on red blood cells that contain sialic acid to those that do not.


In effect, if the gene finds all the doors locked, then it will try all the windows until it finds one it can force open.

The team who performed the research work consisted of Janine Stubbs, Ken Simpson, Tony Triglia, David Plouffe, Christopher J. Tonkin, Manoj T. Duraisingh, Alexander G. Maier and Elizabeth Winzeler. Professor Cowman and his team at WEHI worked with researchers from the Scripps Research Institute (TSRI) in La Jolla, California and the Genomics Institute of the Novartis Research Foundation in San Diego, California.

This discovery made by the group will have a profound impact upon the design of new anti-malarial vaccines, since the inactivation of this single protein could block multiple entry points currently open to the parasite.

Professor Cowman is a Howard Hughes Medical Institute international research scholar. The results of the new study are published in the 26 August 2005 issue of the prestigious journal, Science.

Brad Allen | EurekAlert!
Further information:
http://www.researchaustralia.com.au
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>