Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Australian-based research team finds the malaria parasite’s ’housebreaking tool’


Plasmodium falciparum, the most lethal malaria parasite, is a housebreaking villain of the red blood cell world. Like a burglar searching for a way in to his targeted premises, the parasite explores a variety of potential entry points to invade the red blood cells of its human victims. When a weak point is found, the intrusion proceeds.

Scientists have known about the parasite’s housebreaking habit for a decade, but just how it breaks in to blood cells has been unknown.

Now, an international team of scientists, led by WEHI’s Professor Alan Cowman, has discovered the gene - known as PfRh4 - that the parasite uses as a tool to switch between potential invasion points. More specifically, the gene provides the parasite with the ability to switch from receptors on red blood cells that contain sialic acid to those that do not.

In effect, if the gene finds all the doors locked, then it will try all the windows until it finds one it can force open.

The team who performed the research work consisted of Janine Stubbs, Ken Simpson, Tony Triglia, David Plouffe, Christopher J. Tonkin, Manoj T. Duraisingh, Alexander G. Maier and Elizabeth Winzeler. Professor Cowman and his team at WEHI worked with researchers from the Scripps Research Institute (TSRI) in La Jolla, California and the Genomics Institute of the Novartis Research Foundation in San Diego, California.

This discovery made by the group will have a profound impact upon the design of new anti-malarial vaccines, since the inactivation of this single protein could block multiple entry points currently open to the parasite.

Professor Cowman is a Howard Hughes Medical Institute international research scholar. The results of the new study are published in the 26 August 2005 issue of the prestigious journal, Science.

Brad Allen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>