Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the potential of cancer vaccines

29.08.2005


A special stretch of genetic material may turn off the immune suppression that stymies attempts to fight cancer with a vaccine, said researchers at Baylor College of Medicine (BCM) at Houston.



In a report in today’s issue of the journal Science, Dr. Rong-Fu Wang, a professor in the BCM Center for Cell and Gene Therapy and Department of Immunology, and his colleagues describe a new strategy to turn off the function of a special group of T cells to suppress immune response to tumors and even infectious diseases.

"Since 1995, many groups have tried to develop a vaccine for the treatment of cancer," said Wang, also a member of the faculty of the BCM Graduate School of Biomedical Sciences. "The only problem is that after 10 years of clinical trials, the data suggest that you can induce (cancer) antigen-specific immune responses, but such responses are too weak and transient to eradicate tumor cells."


The answer lies in a group of cells called CD4+ regulatory T cells (Treg for short). These cells have the ability to suppress the body’s natural immune response. If they are depleted, autoimmune diseases will result because the immune system is unchecked and goes on to attack the body’s own tissues.

His group previously reported the existence of tumor-specific Treg cells at tumor sites. "Thus, the tumor cells use these Treg cells to protect themselves," said Wang. "In fact, tumor cells can actively recruit and activate them to turn on their immune suppressive function."

One way to stop this action is to simply wipe out the cells with chemoagents or a specific antibody.

"But you may also deplete the good cells needed for fighting cancer," said Wang.

He and his group identified particular ligands (a special stretch of guanosine-containing DNA material) that can bind specifically to a particular receptor called human Toll-like receptor 8 and then turn off the suppressive function of Treg cells.

Treatment of Treg cells with these ligands converts suppressive Treg cells into non-suppressive T cells.

"In fact, in some cases, this treatment actually enhanced anti-tumor immunity," he said.

He hopes that clinical trials with these special ligands in patients with cancer can get underway quickly.

"It could have a huge impact on cancer therapy or treatment of infectious disease," said Wang. "It could boost response to cancer vaccine as well."

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>