Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamin D puts a brake on activated macrophages

29.08.2005


How a newly discovered mechanism keeps inflammation under control



When macrophages, the first line defender cells of the immune system become activated, they produce an inhibitor, which acts back on them to suppress their activity. This has been revealed by the work of scientists at the German Research Centre for Biotechnology (GBF) in Braunschweig together with colleagues at the Hannover Medical School and at the University of Münster. The suppressor turned out to be an “old acquaintance”: vitamin D3, already well known, particularly for its role in bone metabolism. The scientists have now published their findings in the journal Blood.

Macrophages are the immune system’s “body guards”. They are patrolling the body’s blood and lymph system eating up everything that might be foreign or dangerous for the body – whether these are bacteria, breakdown products or foreign particles. The ingested material is then presented to other specialized immune cells, which determine whether or not these particles constitute a danger for the organism.


If a danger is sensed, interferon-? is released in response – a chemical alarm signal, which acts back on the macrophages and stimulates them. They now accumulate at the site of the danger signal and employ their whole arsenal of biochemical weaponry against the invader. This includes among others hydrogen peroxide, which the macrophages use to kill and neutralize ingested pathogens. The organ or tissue where the defender cells accumulate and go into action is referred to as being “inflamed” by the doctor.

According to the discoveries of the GBF researchers however, as macrophages join this battle they can release vitamin D3, which begins to rein them in after a while and reduces their aggressiveness. A possible explanation for this mechanism is that it functions as a “self-regulatory device of the immune system” suggests the former GBF Ph.D. student, Dr. Laura Helming, who discovered the mechanism while working on her Ph.D. thesis and who is working now as a postdoctoral fellow at Oxford University: “The purpose may be suppression of the inflammatory reaction, before it overshoots the mark”. If this would happen, it could prove to be more dangerous to the organism than the invader itself. Uncontrolled, activated macrophages can cause severe damage and even total destruction of body tissue. Thus, the incorporated vitamin D3 brake makes sure that the body’s own body guards are kept back soon after their activation.

Project leader, Dr. Andreas Lengeling, believes that this discovery may well have medical applications: “The better we understand this mechanism, the easier it will be to develop therapies for chronic inflammatory disorders”, he says.

Manfred Braun | alfa
Further information:
http://www.gbf.de

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>