Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Power Plants Also Fend Off Viruses

26.08.2005


Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS. Images courtesy of Zhijian ’James’ Chen, HHMI at UT Southwestern Medical Center


Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS.

Researchers have discovered a surprise lurking inside mitochondria, the power plants that are present in every cell. It turns out that these powerhouses also contain a protein that triggers the immune system to attack viral invaders.

According to the researchers, the new role makes perfect biological and evolutionary sense because it fits well with another function of mitochondria as executioners of a biochemical cascade that causes programmed cell death, or apoptosis.



“This is the first protein known to be involved in the immune response that is found in mitochondria,” said Zhijian `James’ Chen, a Howard Hughes Medical Institute investigator at the University of Texas Southwestern Medical Center. Chen and his colleagues reported the discovery on August 25, 2005, in an immediate early publication of the journal Cell.

In their studies, Chen and his colleagues were seeking a regulatory molecule that would provide a missing link in the activation of two important triggers of the innate immune system — NF-kB and IRF3. Somehow, these molecules are activated in response to a receptor molecule, called RIG-I, which detects viral genetic material. RIG-I binds to the RNA of viruses such as the influenza virus, hepatitis C virus, West Nile virus and SARS virus.

The researchers knew the molecule they were seeking was present in a biochemical pathway somewhere between RIG-I and other “downstream” regulatory molecules. They initiated a search for this missing molecule by searching for proteins in the cell that contain a characteristic molecular domain, called a CARD domain, which mediates interactions between different regulatory proteins. Their search yielded a protein, which they called MAVS for mitochondrial antiviral signaling.

Their experiments revealed that MAVS activated NF-kB and IRF3 in cell cultures. They also found that in order for MAVS to function, it requires both the CARD domain and another domain that anchors it to the mitochondrial membrane. Studies using fluorescent tracers revealed that MAVS was present in the mitochondria of cells. And when the researchers altered the MAVS molecule in such a way that it prevented MAVS from attaching to mitochondria, the molecule did not function properly.

The researchers demonstrated the importance of MAVS in immune responses by showing that cells without MAVS were vulnerable to viral infection; while those with excess MAVS were resistant to such infections.

Chen speculated that the mitochondria might have evolved into immune sentinels because of their location near internal cell membranes where viral replication takes place. “By having MAVS in the mitochondrial membrane, it provides a strategic position for cells to sense the presence of viruses, especially viral replication,” said Chen.

“In addition, MAVS is unique in that it has both a mitochondrial targeting sequence, as well as a CARD domain sequence,” said Chen. “CARD domain proteins are known to be involved in apoptosis, and the mitochondria are also known to be involved in apoptosis. So, while at this point this is still pure speculation, but perhaps combining these two domains in one protein, MAVS, might allow the cells to integrate signals somehow and coordinate apoptotic responses or immune responses, depending on the type of viral infection.” Apoptosis is triggered when a cell is no longer needed during development or is damaged beyond repair. It serves to protect the body from the accumulation of damaged or malfunctioning cells.

Chen said that the newly discovered immunological service rendered to the cell by mitochondria makes good biological and evolutionary sense. “Evolutionarily, it is believed that mitochondria originated from ancient bacteria, which formed a symbiotic relationship with eukaryotic cells,” said Chen. “For symbiosis to evolve, the bacteria and the host must be beneficial to one another. Mitochondria have long been known to serve the major function of producing chemical energy for the cell, as well as to sense damage and trigger apoptosis. Now, I think our discovery reveals another important function of the mitochondria, and that is in immunity,” he said.

Understanding how boosting MAVS function causes cells to resist viral infection could have important clinical implications, said Chen. “Treatments that enhance the activity of MAVS may prove to be useful in boosting immunity against viruses,” he said. “Furthermore, we suspect that MAVS might be a prime target for some viruses that can evade immune surveillance. If those suspicions prove out, then treatments that counteract this evasion could provide therapeutic benefits,” he said. Chen also speculated that subtle variations in the MAVS protein might explain why people may respond differently when infected with the same virus.

Chen and his colleagues are now exploring such questions, as well as teasing out further molecular details of the signaling mechanism by which MAVS triggers the immune system. “Over the long term, we would like to understand the host-viral interactions that function through MAVS, and how MAVS gives the cell immunity to viruses and how viruses try to evade this function of MAVS. We would like to exploit these findings to develop more effective antiviral strategies.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>