Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Power Plants Also Fend Off Viruses

26.08.2005


Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS. Images courtesy of Zhijian ’James’ Chen, HHMI at UT Southwestern Medical Center


Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS.

Researchers have discovered a surprise lurking inside mitochondria, the power plants that are present in every cell. It turns out that these powerhouses also contain a protein that triggers the immune system to attack viral invaders.

According to the researchers, the new role makes perfect biological and evolutionary sense because it fits well with another function of mitochondria as executioners of a biochemical cascade that causes programmed cell death, or apoptosis.



“This is the first protein known to be involved in the immune response that is found in mitochondria,” said Zhijian `James’ Chen, a Howard Hughes Medical Institute investigator at the University of Texas Southwestern Medical Center. Chen and his colleagues reported the discovery on August 25, 2005, in an immediate early publication of the journal Cell.

In their studies, Chen and his colleagues were seeking a regulatory molecule that would provide a missing link in the activation of two important triggers of the innate immune system — NF-kB and IRF3. Somehow, these molecules are activated in response to a receptor molecule, called RIG-I, which detects viral genetic material. RIG-I binds to the RNA of viruses such as the influenza virus, hepatitis C virus, West Nile virus and SARS virus.

The researchers knew the molecule they were seeking was present in a biochemical pathway somewhere between RIG-I and other “downstream” regulatory molecules. They initiated a search for this missing molecule by searching for proteins in the cell that contain a characteristic molecular domain, called a CARD domain, which mediates interactions between different regulatory proteins. Their search yielded a protein, which they called MAVS for mitochondrial antiviral signaling.

Their experiments revealed that MAVS activated NF-kB and IRF3 in cell cultures. They also found that in order for MAVS to function, it requires both the CARD domain and another domain that anchors it to the mitochondrial membrane. Studies using fluorescent tracers revealed that MAVS was present in the mitochondria of cells. And when the researchers altered the MAVS molecule in such a way that it prevented MAVS from attaching to mitochondria, the molecule did not function properly.

The researchers demonstrated the importance of MAVS in immune responses by showing that cells without MAVS were vulnerable to viral infection; while those with excess MAVS were resistant to such infections.

Chen speculated that the mitochondria might have evolved into immune sentinels because of their location near internal cell membranes where viral replication takes place. “By having MAVS in the mitochondrial membrane, it provides a strategic position for cells to sense the presence of viruses, especially viral replication,” said Chen.

“In addition, MAVS is unique in that it has both a mitochondrial targeting sequence, as well as a CARD domain sequence,” said Chen. “CARD domain proteins are known to be involved in apoptosis, and the mitochondria are also known to be involved in apoptosis. So, while at this point this is still pure speculation, but perhaps combining these two domains in one protein, MAVS, might allow the cells to integrate signals somehow and coordinate apoptotic responses or immune responses, depending on the type of viral infection.” Apoptosis is triggered when a cell is no longer needed during development or is damaged beyond repair. It serves to protect the body from the accumulation of damaged or malfunctioning cells.

Chen said that the newly discovered immunological service rendered to the cell by mitochondria makes good biological and evolutionary sense. “Evolutionarily, it is believed that mitochondria originated from ancient bacteria, which formed a symbiotic relationship with eukaryotic cells,” said Chen. “For symbiosis to evolve, the bacteria and the host must be beneficial to one another. Mitochondria have long been known to serve the major function of producing chemical energy for the cell, as well as to sense damage and trigger apoptosis. Now, I think our discovery reveals another important function of the mitochondria, and that is in immunity,” he said.

Understanding how boosting MAVS function causes cells to resist viral infection could have important clinical implications, said Chen. “Treatments that enhance the activity of MAVS may prove to be useful in boosting immunity against viruses,” he said. “Furthermore, we suspect that MAVS might be a prime target for some viruses that can evade immune surveillance. If those suspicions prove out, then treatments that counteract this evasion could provide therapeutic benefits,” he said. Chen also speculated that subtle variations in the MAVS protein might explain why people may respond differently when infected with the same virus.

Chen and his colleagues are now exploring such questions, as well as teasing out further molecular details of the signaling mechanism by which MAVS triggers the immune system. “Over the long term, we would like to understand the host-viral interactions that function through MAVS, and how MAVS gives the cell immunity to viruses and how viruses try to evade this function of MAVS. We would like to exploit these findings to develop more effective antiviral strategies.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>