Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cellular Power Plants Also Fend Off Viruses


Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS. Images courtesy of Zhijian ’James’ Chen, HHMI at UT Southwestern Medical Center

Three confocal microscopic images of a cell stained with an antibody that detects the protein MAVS (left), Mito-Tracker (center), and an overlay of the green and red images (right) that indicates the mitochondrial localization of MAVS.

Researchers have discovered a surprise lurking inside mitochondria, the power plants that are present in every cell. It turns out that these powerhouses also contain a protein that triggers the immune system to attack viral invaders.

According to the researchers, the new role makes perfect biological and evolutionary sense because it fits well with another function of mitochondria as executioners of a biochemical cascade that causes programmed cell death, or apoptosis.

“This is the first protein known to be involved in the immune response that is found in mitochondria,” said Zhijian `James’ Chen, a Howard Hughes Medical Institute investigator at the University of Texas Southwestern Medical Center. Chen and his colleagues reported the discovery on August 25, 2005, in an immediate early publication of the journal Cell.

In their studies, Chen and his colleagues were seeking a regulatory molecule that would provide a missing link in the activation of two important triggers of the innate immune system — NF-kB and IRF3. Somehow, these molecules are activated in response to a receptor molecule, called RIG-I, which detects viral genetic material. RIG-I binds to the RNA of viruses such as the influenza virus, hepatitis C virus, West Nile virus and SARS virus.

The researchers knew the molecule they were seeking was present in a biochemical pathway somewhere between RIG-I and other “downstream” regulatory molecules. They initiated a search for this missing molecule by searching for proteins in the cell that contain a characteristic molecular domain, called a CARD domain, which mediates interactions between different regulatory proteins. Their search yielded a protein, which they called MAVS for mitochondrial antiviral signaling.

Their experiments revealed that MAVS activated NF-kB and IRF3 in cell cultures. They also found that in order for MAVS to function, it requires both the CARD domain and another domain that anchors it to the mitochondrial membrane. Studies using fluorescent tracers revealed that MAVS was present in the mitochondria of cells. And when the researchers altered the MAVS molecule in such a way that it prevented MAVS from attaching to mitochondria, the molecule did not function properly.

The researchers demonstrated the importance of MAVS in immune responses by showing that cells without MAVS were vulnerable to viral infection; while those with excess MAVS were resistant to such infections.

Chen speculated that the mitochondria might have evolved into immune sentinels because of their location near internal cell membranes where viral replication takes place. “By having MAVS in the mitochondrial membrane, it provides a strategic position for cells to sense the presence of viruses, especially viral replication,” said Chen.

“In addition, MAVS is unique in that it has both a mitochondrial targeting sequence, as well as a CARD domain sequence,” said Chen. “CARD domain proteins are known to be involved in apoptosis, and the mitochondria are also known to be involved in apoptosis. So, while at this point this is still pure speculation, but perhaps combining these two domains in one protein, MAVS, might allow the cells to integrate signals somehow and coordinate apoptotic responses or immune responses, depending on the type of viral infection.” Apoptosis is triggered when a cell is no longer needed during development or is damaged beyond repair. It serves to protect the body from the accumulation of damaged or malfunctioning cells.

Chen said that the newly discovered immunological service rendered to the cell by mitochondria makes good biological and evolutionary sense. “Evolutionarily, it is believed that mitochondria originated from ancient bacteria, which formed a symbiotic relationship with eukaryotic cells,” said Chen. “For symbiosis to evolve, the bacteria and the host must be beneficial to one another. Mitochondria have long been known to serve the major function of producing chemical energy for the cell, as well as to sense damage and trigger apoptosis. Now, I think our discovery reveals another important function of the mitochondria, and that is in immunity,” he said.

Understanding how boosting MAVS function causes cells to resist viral infection could have important clinical implications, said Chen. “Treatments that enhance the activity of MAVS may prove to be useful in boosting immunity against viruses,” he said. “Furthermore, we suspect that MAVS might be a prime target for some viruses that can evade immune surveillance. If those suspicions prove out, then treatments that counteract this evasion could provide therapeutic benefits,” he said. Chen also speculated that subtle variations in the MAVS protein might explain why people may respond differently when infected with the same virus.

Chen and his colleagues are now exploring such questions, as well as teasing out further molecular details of the signaling mechanism by which MAVS triggers the immune system. “Over the long term, we would like to understand the host-viral interactions that function through MAVS, and how MAVS gives the cell immunity to viruses and how viruses try to evade this function of MAVS. We would like to exploit these findings to develop more effective antiviral strategies.”

Jim Keeley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>