Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinpointing the Cause of a Neurodegenerative Disorder

26.08.2005


Researchers have discovered how the abnormal repetition of a genetic sequence can have disastrous consequences that lead to the death of neurons that govern balance and motor coordination. The studies bolster the emerging theory that neurodegenerative disorders can be caused by having extra copies of a normal protein, not just a mutated one.



People who are afflicted with the rare neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) suffer damage to cerebellar Purkinje cells caused by a toxic buildup of the protein Ataxin-1. Researchers knew that SCA1, Huntington’s disease and other related disorders arise because of a “genetic stutter,” in which a mutation causes a particular gene sequence to repeat itself. These abnormal genetic repeats cause the resulting proteins to contain unusually long repetitive stretches of the amino acid glutamine.

The new findings, which are published in the August 26, 2005, issue of the journal Cell, provide a molecular explanation for Ataxin-1’s assault on cerebellar Purkinje cells.


The findings should help to understand a range of diseases, including Huntington’s disease, which are caused by an abnormal number of repetitive gene sequences. The discovery may also offer a new conceptual approach to understanding the pathology of Parkinson’s disease and Alzheimer’s disease, according to Huda Y. Zoghbi, a Howard Hughes Medical Institute investigator at the Baylor College of Medicine.

People with polyglutamine repeat disorders suffer severe degeneration in particular groups of neurons that vary depending on the type of disease. In SCA1, for example, the buildup of Ataxin-1 damages the cerebellar Purkinje cells. As a result of the damage, people with SCA1 lose balance and motor coordination. Loss of muscle control worsens until patients can no longer eat or breathe.

“We had known that the expansion of the glutamine tract within Ataxin-1 probably interfered with normal clearance of Ataxin-1, meaning that it accumulated in cells,” said Zoghbi. She noted that earlier studies yielded hints that the glutamine repeats somehow caused Ataxin-1 function to be altered in a way that damaged or killed Purkinje cells.

“We had been accumulating clues that the glutamine tract expansion is clearly what is important for disease because that’s the mutation,” said Zoghbi. “But we also concluded that there was something else beyond the glutamine that’s really mediating the toxicity of the protein.” Those conclusions were based, in part, on experiments in mice that showed that increased levels of normal Ataxin-1 can cause the pathology of SCA1.

Turning to the fruit fly, Drosophila, a favorite of geneticists, Zoghbi and her colleagues showed that a particular domain of Ataxin-1 was responsible for causing the flies to lose sensory neurons, but the domain’s function remained unknown. Then, a finding by co-author Hugo Bellen, an HHMI investigator at Baylor, set the researchers off in a more fruitful direction. Bellen’s team was doing experiments designed to identify proteins that interact with the Drosophila protein, Senseless. His group discovered serendipitously that Senseless interacts with the Ataxin-1 domain and is important for nervous system development.

In further experiments in flies, Zoghbi and her colleagues showed that increases in Ataxin-1 reduced levels of Senseless during peripheral nervous system development, causing developmental abnormalities. Additional experiments demonstrated that enhanced levels of normal and abnormal human Ataxin-1 produced even more serious pathology in the flies.

The researchers then showed that the same interaction and pathological effects occurred in mice — in which Ataxin-1 affected the mammalian version of Senseless, which is called GFi-1. And, they found that mice lacking GFi-1 showed Purkinje cell degeneration, just like humans with SCA1.

“The overall picture we have now is that glutamine expansion causes some aspects of the pathology of SCA1 in part by enhancing the activity of the domain that is outside the glutamine repeat,” said Zoghbi.

The finding offers insight into the molecular mechanisms that cause SCA1, Huntington’s disease and other glutamine repeat disorders, said Zoghbi. “It seems to be a recurring theme in neurodegenerative disorders that having extra copies of a normal protein, not just a mutated one, can cause pathology. There have been observations that having extra copies of the normal alpha synuclein protein that causes Parkinson’s disease, or of the amyloid precursor protein that causes Alzheimer’s disease, can cause pathology,” she said. “So, this raises the question of whether mutations in the genes for these proteins enhance their normal action.

“Importantly, such insights can now guide studies that focus on the normal function and interactions of these proteins and how they might be enhanced by disease-causing mutations," said Zoghbi. "These studies could give better understanding of how the proteins cause disease.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>