Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expands malaria’s invasion options

26.08.2005


The malaria parasite Plasmodium falciparum uses different pathways to invade red blood cells, evading the body’s immune system and complicating efforts to create effective vaccines against the disease. A research team led by Australia’s Alan F. Cowman, an international research scholar with the Howard Hughes Medical Institute, has identified a gene that the parasite uses to switch back and forth between invasion pathways.



Researchers from the Scripps Research Institute in La Jolla, California, and the Genomics Institute of the Novartis Research Foundation in San Diego contributed to the work, which was published in the August 26, 2005, issue of Science.

P. falciparum causes the most lethal form of malaria, which results in one million deaths a year worldwide.


Some P. falciparum strains invade red blood cells via protein receptors on the surface that contain a sugar known as sialic acid. If scientists treat blood cells with an enzyme to remove sialic acid, the parasite can no longer invade. Other strains – including one called W2mef – can invade using the sialic acid receptors, but also have the ability to switch to other pathways if necessary.

"It’s a bit like someone trying to get into a house with different doors," says. Cowman of The Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, and the study’s senior author. "When you remove sialic acid, you block half the doors. W2mef normally goes in through the receptors with sialic acid, but it can switch – so it has two methods of entry."

To investigate how the parasite manages to switch to an alternative mode of blood cell invasion, Cowman and colleagues produced lines of the W2mef parasite that used sialic acid for invasion, and lines that could invade without it. Then they compared the differences in gene activity between the two types and identified two genes that warranted further study.

The team found only two genes whose activity differed between parasites that used sialic acid and those that did not. The first of these was a gene known as P. falciparum reticulocyte-binding like homolog 4 (PfRh4) that’s similar to other genes known to play a role in the invasion of red blood cells by P. falciparum and related parasites. The second gene, EBA165, did not appear to produce a functional protein, and the scientists suspect it had been activated only because it was physically adjacent to PfRh4. Using a second, more quantitative approach, the team found that the two genes were 60- to-80 times more active in the sialic acid-independent parasites than in those that needed the sugar for cell entry.

These results suggested that activation of the PfRh4 gene was required for the parasite to make the switch to sialic acid-independent invasion. Indeed, the team was able to find PfRh4 protein in sialic acid-independent parasites, but not in the sialic acid-dependent lines. And when the group constructed parasites in which the PfRh4 gene was disrupted, they found that those parasites would not grow in the absence of sialic acid, although they grew normally on cells with the sugar – further suggesting that activation of the PfRh4 gene is required for switching from sialic acid-dependent to –independent invasion.

"Activation of PfRh4 represents a previously unknown mechanism to switch invasion pathways and provides P. falciparum with exquisite adaptability in the face of receptor changes and immune system responses," the team concluded.

The results have important implications for the design of anti-malaria vaccines. The molecule on the parasite that binds to sialic acid receptors on host cells is considered a target in anti-malaria medications, but Cowman notes that if only that gene is blocked, some parasites can still use PfRh4 to switch to other means of entry. "If both genes are disrupted, it blocks both ways of getting in," he says.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>