Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double punch for female survival

26.08.2005


Achieving equality between the sexes can be a challenge even for single cells. Since evolution began removing bits of male DNA to create the "Y" chromosome, males have had a single copy of certain key genes on the X chromosome, whereas females have two. Normally this would lead females to produce twice the amount of some proteins, which could be fatal, but cells have developed ways to prevent this. Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg have now made a breakthrough in understanding how this balance, called "dosage compensation," is maintained. They have discovered a unique double-locking mechanism which prevents the production of a molecule that would be fatal for female cells; their work is reported in the current issue of Cell.



Genes are used to create mRNA molecules, which are then used to create proteins. "Cells build a machine called a ribosome on an mRNA to transform its information into proteins," Hentze says. "We’ve known that a protein in female flies called SXL can block the work of this machine, but we didn’t know how. This study unravels how SXL prevents the synthesis of another protein, called MSL-2, which is essential in males but would kill female flies."

An mRNA molecule is linear, with a protein-encoding part sandwiched in the middle between regulatory regions near the head and the tail. Most research has focused on interactions between the head region and the ribosome, because it is here that cells assemble a "docking bridge" for the protein-synthesis machinery. Scientists have discovered other cases where protein synthesis is blocked at this head region. But this case turned out to be different. "Copies of SXL have to be attached to both ends of the msl-2 mRNA to efficiently stop the synthesis of MSL-2 proteins," says Karsten Beckmann, a PhD student in Hentze’s lab, who headed the current project.


"To our surprise we found that the SXL molecules bound at the two ends do not directly work together, but that they help each other by acting on two separate steps. The SXL that binds to the tail of the mRNA blocks the construction of the docking bridge for the ribosome at the head end." The second copy of SXL has a different function, he says. Single control mechanisms are often "leaky", which means that ribosomes may still succeed in binding to the mRNA. These ribosomes have to be stopped, and the extra copy of SXL at the head regulatory region prevents them from negotiating their way towards the protein-encoding region in the middle.

What’s unusual is that SXL is serving as its own "backup". The work by Hentze and his colleagues shows for the first time that a single regulatory molecule can deliver a "double punch" to lock away the mRNA from the ribosome, thus preventing the expression of otherwise fatal proteins.

"Some diseases develop because of a disturbance in the fine-tuning of protein dosages," Hentze says. "The control of protein synthesis is also crucial in the growth and development of animal tissues. Until a few years ago, scientists thought this happened almost uniquely at the level of genes. So it’s exciting to find an entirely new mechanism that evolved to let cells take control at the level of RNA. No one knows how widely this type of back-up mechanism is used. We’re now investigating some other contexts in which a very similar mechanism might be at work."

Sarah Sherwood | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>