Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double punch for female survival

26.08.2005


Achieving equality between the sexes can be a challenge even for single cells. Since evolution began removing bits of male DNA to create the "Y" chromosome, males have had a single copy of certain key genes on the X chromosome, whereas females have two. Normally this would lead females to produce twice the amount of some proteins, which could be fatal, but cells have developed ways to prevent this. Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg have now made a breakthrough in understanding how this balance, called "dosage compensation," is maintained. They have discovered a unique double-locking mechanism which prevents the production of a molecule that would be fatal for female cells; their work is reported in the current issue of Cell.



Genes are used to create mRNA molecules, which are then used to create proteins. "Cells build a machine called a ribosome on an mRNA to transform its information into proteins," Hentze says. "We’ve known that a protein in female flies called SXL can block the work of this machine, but we didn’t know how. This study unravels how SXL prevents the synthesis of another protein, called MSL-2, which is essential in males but would kill female flies."

An mRNA molecule is linear, with a protein-encoding part sandwiched in the middle between regulatory regions near the head and the tail. Most research has focused on interactions between the head region and the ribosome, because it is here that cells assemble a "docking bridge" for the protein-synthesis machinery. Scientists have discovered other cases where protein synthesis is blocked at this head region. But this case turned out to be different. "Copies of SXL have to be attached to both ends of the msl-2 mRNA to efficiently stop the synthesis of MSL-2 proteins," says Karsten Beckmann, a PhD student in Hentze’s lab, who headed the current project.


"To our surprise we found that the SXL molecules bound at the two ends do not directly work together, but that they help each other by acting on two separate steps. The SXL that binds to the tail of the mRNA blocks the construction of the docking bridge for the ribosome at the head end." The second copy of SXL has a different function, he says. Single control mechanisms are often "leaky", which means that ribosomes may still succeed in binding to the mRNA. These ribosomes have to be stopped, and the extra copy of SXL at the head regulatory region prevents them from negotiating their way towards the protein-encoding region in the middle.

What’s unusual is that SXL is serving as its own "backup". The work by Hentze and his colleagues shows for the first time that a single regulatory molecule can deliver a "double punch" to lock away the mRNA from the ribosome, thus preventing the expression of otherwise fatal proteins.

"Some diseases develop because of a disturbance in the fine-tuning of protein dosages," Hentze says. "The control of protein synthesis is also crucial in the growth and development of animal tissues. Until a few years ago, scientists thought this happened almost uniquely at the level of genes. So it’s exciting to find an entirely new mechanism that evolved to let cells take control at the level of RNA. No one knows how widely this type of back-up mechanism is used. We’re now investigating some other contexts in which a very similar mechanism might be at work."

Sarah Sherwood | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>