Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double punch for female survival

26.08.2005


Achieving equality between the sexes can be a challenge even for single cells. Since evolution began removing bits of male DNA to create the "Y" chromosome, males have had a single copy of certain key genes on the X chromosome, whereas females have two. Normally this would lead females to produce twice the amount of some proteins, which could be fatal, but cells have developed ways to prevent this. Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg have now made a breakthrough in understanding how this balance, called "dosage compensation," is maintained. They have discovered a unique double-locking mechanism which prevents the production of a molecule that would be fatal for female cells; their work is reported in the current issue of Cell.



Genes are used to create mRNA molecules, which are then used to create proteins. "Cells build a machine called a ribosome on an mRNA to transform its information into proteins," Hentze says. "We’ve known that a protein in female flies called SXL can block the work of this machine, but we didn’t know how. This study unravels how SXL prevents the synthesis of another protein, called MSL-2, which is essential in males but would kill female flies."

An mRNA molecule is linear, with a protein-encoding part sandwiched in the middle between regulatory regions near the head and the tail. Most research has focused on interactions between the head region and the ribosome, because it is here that cells assemble a "docking bridge" for the protein-synthesis machinery. Scientists have discovered other cases where protein synthesis is blocked at this head region. But this case turned out to be different. "Copies of SXL have to be attached to both ends of the msl-2 mRNA to efficiently stop the synthesis of MSL-2 proteins," says Karsten Beckmann, a PhD student in Hentze’s lab, who headed the current project.


"To our surprise we found that the SXL molecules bound at the two ends do not directly work together, but that they help each other by acting on two separate steps. The SXL that binds to the tail of the mRNA blocks the construction of the docking bridge for the ribosome at the head end." The second copy of SXL has a different function, he says. Single control mechanisms are often "leaky", which means that ribosomes may still succeed in binding to the mRNA. These ribosomes have to be stopped, and the extra copy of SXL at the head regulatory region prevents them from negotiating their way towards the protein-encoding region in the middle.

What’s unusual is that SXL is serving as its own "backup". The work by Hentze and his colleagues shows for the first time that a single regulatory molecule can deliver a "double punch" to lock away the mRNA from the ribosome, thus preventing the expression of otherwise fatal proteins.

"Some diseases develop because of a disturbance in the fine-tuning of protein dosages," Hentze says. "The control of protein synthesis is also crucial in the growth and development of animal tissues. Until a few years ago, scientists thought this happened almost uniquely at the level of genes. So it’s exciting to find an entirely new mechanism that evolved to let cells take control at the level of RNA. No one knows how widely this type of back-up mechanism is used. We’re now investigating some other contexts in which a very similar mechanism might be at work."

Sarah Sherwood | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>