Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for gene that counteracts formation of tumors

26.08.2005


Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) have achieved a new breakthrough in cancer research. The researchers, connected to Ghent University, have discovered the function of an important mediator involved in suppressing the development of tumors. Using a mouse model, they have shown that absence of the mediator makes the mice susceptible to the development of cancer. Through this research, the scientists are contributing to a better understanding of the molecular mechanisms that control tumor development.

Cell cycle: a vital, controlled process in our body

Every day, the billions of cells that compose our body are being replaced: old cells die and new ones are produced. In the course of this process, each cell goes through a well-organized series of phases. First of all, the hereditary material, or DNA, in the cell nucleus is duplicated. Next, the nucleus divides itself in half; and then the entire cell divides, and the daughter cells grow into completely new cells. Because it is crucial that this cell cycle runs perfectly, various control points have been built in to enable the cell to control the stability of the DNA. If the DNA becomes damaged, the cell cycle will come to a stop.



A central role for the p53 protein in cancer

The p53 protein is responsible for stopping the cell cycle. Normally, this happens at the end of the growth phase - but, if the DNA has been damaged or if other problems arise, p53 can also trigger programmed cell death.

Because p53 can halt the further growth of cells, this protein plays an essential role in suppressing the development of tumors and blocking the onset of cancer. When cancer appears, the p53 protein is deactivated - either through an alteration or mutation in the gene itself, or through modified activity of the proteins that regulate p53 or that influence its activity.

Ptprv, a new target for p53

Research by Gilles Doumont, Alain Martoriati and their colleagues from the team of Jean-Christophe Marine has revealed that the protein Ptprv works with p53. In certain circumstances, p53 directly influences the production of Ptprv. In the case of DNA damage, Ptprv turns out to play a key role in stopping the cell cycle and also contributes to blocking the development of tumors. This important role for Ptprv has been demonstrated using mouse models. Although the Ghent researchers have elucidated its role in the development of cancer, the actual function of Ptprv has not yet been discovered.

Does Ptprv open new perspectives for the treatment of cancer?

After exposure to carcinogens, mice that lack Ptprv develop cancer much more readily than normal mice do. The findings of the Ghent researchers show that Ptprv is an essential player in preventing and counteracting cancer. Further research can reveal whether Ptprv can be a potential point of action for the treatment of cancer.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>