Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for gene that counteracts formation of tumors

26.08.2005


Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) have achieved a new breakthrough in cancer research. The researchers, connected to Ghent University, have discovered the function of an important mediator involved in suppressing the development of tumors. Using a mouse model, they have shown that absence of the mediator makes the mice susceptible to the development of cancer. Through this research, the scientists are contributing to a better understanding of the molecular mechanisms that control tumor development.

Cell cycle: a vital, controlled process in our body

Every day, the billions of cells that compose our body are being replaced: old cells die and new ones are produced. In the course of this process, each cell goes through a well-organized series of phases. First of all, the hereditary material, or DNA, in the cell nucleus is duplicated. Next, the nucleus divides itself in half; and then the entire cell divides, and the daughter cells grow into completely new cells. Because it is crucial that this cell cycle runs perfectly, various control points have been built in to enable the cell to control the stability of the DNA. If the DNA becomes damaged, the cell cycle will come to a stop.



A central role for the p53 protein in cancer

The p53 protein is responsible for stopping the cell cycle. Normally, this happens at the end of the growth phase - but, if the DNA has been damaged or if other problems arise, p53 can also trigger programmed cell death.

Because p53 can halt the further growth of cells, this protein plays an essential role in suppressing the development of tumors and blocking the onset of cancer. When cancer appears, the p53 protein is deactivated - either through an alteration or mutation in the gene itself, or through modified activity of the proteins that regulate p53 or that influence its activity.

Ptprv, a new target for p53

Research by Gilles Doumont, Alain Martoriati and their colleagues from the team of Jean-Christophe Marine has revealed that the protein Ptprv works with p53. In certain circumstances, p53 directly influences the production of Ptprv. In the case of DNA damage, Ptprv turns out to play a key role in stopping the cell cycle and also contributes to blocking the development of tumors. This important role for Ptprv has been demonstrated using mouse models. Although the Ghent researchers have elucidated its role in the development of cancer, the actual function of Ptprv has not yet been discovered.

Does Ptprv open new perspectives for the treatment of cancer?

After exposure to carcinogens, mice that lack Ptprv develop cancer much more readily than normal mice do. The findings of the Ghent researchers show that Ptprv is an essential player in preventing and counteracting cancer. Further research can reveal whether Ptprv can be a potential point of action for the treatment of cancer.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>