Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for gene that counteracts formation of tumors

26.08.2005


Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) have achieved a new breakthrough in cancer research. The researchers, connected to Ghent University, have discovered the function of an important mediator involved in suppressing the development of tumors. Using a mouse model, they have shown that absence of the mediator makes the mice susceptible to the development of cancer. Through this research, the scientists are contributing to a better understanding of the molecular mechanisms that control tumor development.

Cell cycle: a vital, controlled process in our body

Every day, the billions of cells that compose our body are being replaced: old cells die and new ones are produced. In the course of this process, each cell goes through a well-organized series of phases. First of all, the hereditary material, or DNA, in the cell nucleus is duplicated. Next, the nucleus divides itself in half; and then the entire cell divides, and the daughter cells grow into completely new cells. Because it is crucial that this cell cycle runs perfectly, various control points have been built in to enable the cell to control the stability of the DNA. If the DNA becomes damaged, the cell cycle will come to a stop.



A central role for the p53 protein in cancer

The p53 protein is responsible for stopping the cell cycle. Normally, this happens at the end of the growth phase - but, if the DNA has been damaged or if other problems arise, p53 can also trigger programmed cell death.

Because p53 can halt the further growth of cells, this protein plays an essential role in suppressing the development of tumors and blocking the onset of cancer. When cancer appears, the p53 protein is deactivated - either through an alteration or mutation in the gene itself, or through modified activity of the proteins that regulate p53 or that influence its activity.

Ptprv, a new target for p53

Research by Gilles Doumont, Alain Martoriati and their colleagues from the team of Jean-Christophe Marine has revealed that the protein Ptprv works with p53. In certain circumstances, p53 directly influences the production of Ptprv. In the case of DNA damage, Ptprv turns out to play a key role in stopping the cell cycle and also contributes to blocking the development of tumors. This important role for Ptprv has been demonstrated using mouse models. Although the Ghent researchers have elucidated its role in the development of cancer, the actual function of Ptprv has not yet been discovered.

Does Ptprv open new perspectives for the treatment of cancer?

After exposure to carcinogens, mice that lack Ptprv develop cancer much more readily than normal mice do. The findings of the Ghent researchers show that Ptprv is an essential player in preventing and counteracting cancer. Further research can reveal whether Ptprv can be a potential point of action for the treatment of cancer.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>