Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The right hitchhiker can save an aphid’s life

25.08.2005


Carrying the right bacterial hitchhiker can make the difference between life and death for an aphid.


A parasitoid wasp stalks pea aphids so she can lay eggs in them. The wasp is a tad bigger than 0.01 inches long. Photo credit: (c) 2005 Kerry M. Oliver.



Pea aphids are often under attack by wasps seeking to lay their eggs inside aphids, turning them into an all-you-can-eat buffet for the larval wasps.

The aphids vary in their resistance to the wasps, which scientists had chalked up to genetic differences between aphids.


But it’s not in their genes at all -- the wasp-resistant aphids owe their lives to the symbiotic bacteria carried inside them, according to new research.

"We knew there was a tremendous amount of variation in resistance to parasitism among different aphid lineages," said Kerry M. Oliver, lead author on the report. "We were definitely surprised – we assumed the bulk of the resistance was due to the aphids’ genotype."

Figuring out what makes insects resistant to natural enemies is important to farmers. Pea aphids can be agricultural pests on plants in the pea family including lentils and peas.

The new finding suggests why some lineages of aphids readily succumb to the wasps and others don’t.

"This work shows the difference can be attributed to the symbionts, not to the aphid genotype," said Oliver, a postdoctoral research associate in The University of Arizona’s department of entomology and a member of UA’s Center for Insect Science.

Oliver added that this implies aphids could acquire resistance to natural enemies by picking up bacterial symbionts, rather than having changes in the aphids’ genes. Such a newly acquired resistance is heritable, because the bacteria get passed down from mother to her offspring.

The article by Oliver and his co-authors Nancy A. Moran, UA Regents’ Professor of ecology and evolutionary biology, and Martha S. Hunter, UA associate professor of entomology, is published this week in the online early edition of the Proceedings of the National Academy of Sciences. The U.S. Department of Agriculture funded the research.

Many insects harbor bacterial symbionts that are passed from mother to offspring. LIttle is known about whether such symbionts can boost the host insects’ resistance to natural enemies.

As part of his doctoral research in UA’s Interdisciplinary Program in Insect Science, Oliver investigated the pea aphid, Acyrthosiphon pisum, an aphid known to vary in resistance to one of its major enemies, the parasitoid wasp Aphidius ervi. The aphids can also host one of several bacterial symbionts known as secondary symbionts.

One of his previous experiments indicated the symbiotic bacteria contribute at least some of the observed variation in resistance to the wasps.

"But we still thought most of the variation in resistance was due to the aphids’ genotype," he said.

To tease out how much of the resistance was from the aphids’ genes and how much from their symbionts, Oliver did another series of experiments. He took advantage of the fact that in the lab, aphids reproduce asexually -- female aphids produce more female aphids who produce more female aphids -- which means the offspring are identical genetically, generation after generation after generation.

Oliver injected several uninfected lineages of aphids with a secondary symbiont called Hamiltonella defensa. As a result, he had five genetically distinct colonies of pea aphids that all carried Hamiltonella defensa.

To test resistance to the wasps, he caged the different groups of infected aphids on individual fava bean plants by inverting plastic drink cups over the potted plants with aphids. Each plant had 30 aphids, all with the same bacteria inside.

Then he introduced a female wasp into each enclosure. Each wasp set about laying one egg per aphid in as many aphids as she could manage in the time allotted. Oliver removed the wasps after 6 hours.

Ten days later, he looked for evidence of wasp parasitism by counting the "mummies" -- the golden, hardened carcasses of aphids that had become homes for wasp larvae.

Oliver compared the rates of parasitism in uninfected aphids to infected aphids and found that carrying the H. defensa symbiont reduced parasitism by about 40 percent, no matter what the aphid’s genotype.

He also did another experiment by taking uninfected aphids and injected them with various different secondary symbionts, so he had five colonies of pea aphids that were genetically identical but harbored different bacteria.

In this case, the infected aphids varied from 19% to almost 100% resistance, depending on which symbiont they carried.

The experiments show that aphids’ variation in resistance to wasp parasitism stems from their bacteria, not their genes.

"Aphids are just completely nailed by natural enemies. Having these symbiotic defenders is really important to the aphids," Oliver said.

"Now we know symbionts confer resistance, but we don’t know the mechanism of resistance -- we don’t know the how." He said figuring that out is the team’s next step.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>