Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel lipoplex nanoparticle to be used in 1st human trial treating advanced solid cancer


The first clinical trial of a biologic nanoparticle designed to give back to cancer patients the tumor-busting gene they have lost is expected to start in September at Georgetown University Medical Center.

The phase I clinical study will enroll 20 patients with advanced solid cancers (including most common tumor types), and is the culmination of more than a decade of work by a team of researchers led by Professor Esther H. Chang, Ph.D. at the Lombardi Comprehensive Cancer Center.

Their research has led to development of a tiny structure -- measuring a millionth of an inch across -- that resembles a virus particle that can penetrate deeply into the tumor and move efficiently into cells. The device is a "liposome" -- a microscopic globule made of lipids -- that is spiked on the outside with antibody molecules that will seek out, bind to, and then enter cancer cells including metastases wherever they hide in the body. These molecules bind to the receptor for transferrin that is present in high numbers on cancer cells.

Once inside, the nanoparticle, which the researchers call a "immunolipoplex," will deliver its payload -- the p53 gene whose protein helps to signal cells to self-destruct when they have the kind of genetic damage characterized by cancer and by cancer therapies.

More than half of all cancer patients have cancer cells that have lost normal functioning of the p53 gene, so-called "guardian of the genome," and the Georgetown researchers believe that restoring the gene will improve the tumor-killing ability of traditional treatments.

"We are excited about the promise this nanoparticle has shown in animal tumor models, and are anxious to offer it to patients," said Chang, Professor in the Department of Oncology and Co-director of the Molecular Targets & Developmental Therapeutics Program at Georgetown.

The federal Food and Drug Administration granted approval for the trial to begin in late July. The work is being sponsored by grants from the National Institutes of Health and private foundations. Additional support comes from SynerGene Therapeutics, a biotech research firm with which Chang collaborates.

John Marshall, M.D., Director of Developmental Therapeutics and GI Oncology at Georgetown, will serve as the trial’s principal investigator.

The researchers believe that immunolipoplex represents an advance over the viral "vectors" that have been used to deliver gene therapy, because these liposomes do not produce the kinds of immunologic response seen when disabled viruses are used to carry the payload. They also say that the nanoparticle is of a small uniform size and consistency, and has been proven to work in animals bearing tumor.

In preclinical research, Chang and long-term research colleague Kathleen Pirollo, Ph.D. have found that these nanoparticles substantially improve the tumor-fighting power of both chemotherapy and radiation therapy. These agents work synergistically with traditional therapies because the newly restored p53 protein helps push cancer cells that are now damaged to self-destruct.

"We believe this approach will make it difficult for the cancer cells to become resistant to therapy," Chang said. "As a result, cancers treated with these liposomal formulations should be less likely to recur after therapy is complete."

For example, use of these p53-loaded liposomes in combination with radiation therapy eliminated prostate and head and neck tumors in mice, which then survived cancer-free for more than 200 days -- until they all died of old age. Similar promising results were seen when the nanoparticles were combined with chemotherapy to treat animal models of melanoma and aggressive breast cancer.

Among the solid tumors approved for testing in the clinical trial are head and neck, prostate, pancreatic, breast, bladder, colon, cervical, brain, melanoma, liver and lung cancers.

Laura Cavender | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>