Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapin: A protein with therapy potential for autism

25.08.2005


Rutgers’ Bonnie Firestein likens nerve cells to trees -- some are short and bushy with many branches while others are tall with a few branches coming out of one or two main trunks. Different branching patterns correlate with specific disorders and Firestein’s quest is to discover how these dissimilar patterns come about and why.



A new paper by Firestein and her colleagues at Rutgers, The State University of New Jersey, examines the role of the protein snapin in nerve branch, or dendrite, patterning and its potential as a drug target in therapies aimed at learning and memory disorders. The article will appear in the journal Molecular Biology of the Cell but appeared online today at MBC in Press.

While disorders like autism may arise from a multiplicity of causes, research at the cellular level, such as that of Firestein and her Rutgers team, is creating an important point of entry for early intervention with therapeutic drugs.


Dendrites are the input centers of neurons -- where nerve cells receive information that they pass on to another nerve cell or to the brain. When there is an abnormal decrease in dendrite branches, there are fewer sites to receive information and communication may be impeded. Individuals with disorders such as autism and Rett syndrome display not only fewer branches, but also show two quite different dendrite patterns. Firestein’s most recent work explores the how and why of dendrite branching and patterning.

"It’s not just how many branches there are, but where they are and the pattern they form," said Firestein, an assistant professor in Rutgers’ department of cell biology and neuroscience. "The patterning actually affects the way a cell signals and understanding the patterning could be just as important as understanding how many branches are there. Ultimately, this could lead to new drugs designed to modulate the patterning activity."

Firestein has worked extensively with cypin, a protein that regulates dendrite numbers (a news release is posted online at ur.rutgers.edu/medrel/viewArticle.html?ArticleID=3708). Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton. Now Firestein’s research group has turned its attention to the protein snapin. When snapin binds to cypin, tubulin is crowded out, so fewer dendrites assemble and more branching occurs.

When researchers overexpressed snapin in hippocampal neurons in the lab, the number of primary dendrites growing out of the cell body decreased, but many more secondary dendrites branched off them.

"This is significant not just in identifying snapin as a protein that shapes the dendrites, but also in pinpointing a drug target where one can regulate the interaction of snapin with cypin," Firestein explained.

Both of these proteins have many other functions in the nerve cell environment and elsewhere in the body. "We need to change cypin’s function for branching but not its other functions," Firestein said. "Rather than a drug that blocks cypin, we need a drug that affects the binding between the cypin and snapin. This is easier to design and cypin can still function with the other proteins it binds to."

Firestein’s goal is to build "a core pathway of dendric branching" – a sequence of steps, each affecting the next, with cypin at the center. "Our pathway says cypin does this; now what regulates cypin? Here snapin has a role. And what does snapin regulate?" said Firestein. "Our hope is in ten years, we will have a whole pathway mapped out so that we can target different points in the pathway with new drugs."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu
http://www.molbiolcell.org/in_press.shtml

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>