Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Snapin: A protein with therapy potential for autism


Rutgers’ Bonnie Firestein likens nerve cells to trees -- some are short and bushy with many branches while others are tall with a few branches coming out of one or two main trunks. Different branching patterns correlate with specific disorders and Firestein’s quest is to discover how these dissimilar patterns come about and why.

A new paper by Firestein and her colleagues at Rutgers, The State University of New Jersey, examines the role of the protein snapin in nerve branch, or dendrite, patterning and its potential as a drug target in therapies aimed at learning and memory disorders. The article will appear in the journal Molecular Biology of the Cell but appeared online today at MBC in Press.

While disorders like autism may arise from a multiplicity of causes, research at the cellular level, such as that of Firestein and her Rutgers team, is creating an important point of entry for early intervention with therapeutic drugs.

Dendrites are the input centers of neurons -- where nerve cells receive information that they pass on to another nerve cell or to the brain. When there is an abnormal decrease in dendrite branches, there are fewer sites to receive information and communication may be impeded. Individuals with disorders such as autism and Rett syndrome display not only fewer branches, but also show two quite different dendrite patterns. Firestein’s most recent work explores the how and why of dendrite branching and patterning.

"It’s not just how many branches there are, but where they are and the pattern they form," said Firestein, an assistant professor in Rutgers’ department of cell biology and neuroscience. "The patterning actually affects the way a cell signals and understanding the patterning could be just as important as understanding how many branches are there. Ultimately, this could lead to new drugs designed to modulate the patterning activity."

Firestein has worked extensively with cypin, a protein that regulates dendrite numbers (a news release is posted online at Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton. Now Firestein’s research group has turned its attention to the protein snapin. When snapin binds to cypin, tubulin is crowded out, so fewer dendrites assemble and more branching occurs.

When researchers overexpressed snapin in hippocampal neurons in the lab, the number of primary dendrites growing out of the cell body decreased, but many more secondary dendrites branched off them.

"This is significant not just in identifying snapin as a protein that shapes the dendrites, but also in pinpointing a drug target where one can regulate the interaction of snapin with cypin," Firestein explained.

Both of these proteins have many other functions in the nerve cell environment and elsewhere in the body. "We need to change cypin’s function for branching but not its other functions," Firestein said. "Rather than a drug that blocks cypin, we need a drug that affects the binding between the cypin and snapin. This is easier to design and cypin can still function with the other proteins it binds to."

Firestein’s goal is to build "a core pathway of dendric branching" – a sequence of steps, each affecting the next, with cypin at the center. "Our pathway says cypin does this; now what regulates cypin? Here snapin has a role. And what does snapin regulate?" said Firestein. "Our hope is in ten years, we will have a whole pathway mapped out so that we can target different points in the pathway with new drugs."

Joseph Blumberg | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>