Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapin: A protein with therapy potential for autism

25.08.2005


Rutgers’ Bonnie Firestein likens nerve cells to trees -- some are short and bushy with many branches while others are tall with a few branches coming out of one or two main trunks. Different branching patterns correlate with specific disorders and Firestein’s quest is to discover how these dissimilar patterns come about and why.



A new paper by Firestein and her colleagues at Rutgers, The State University of New Jersey, examines the role of the protein snapin in nerve branch, or dendrite, patterning and its potential as a drug target in therapies aimed at learning and memory disorders. The article will appear in the journal Molecular Biology of the Cell but appeared online today at MBC in Press.

While disorders like autism may arise from a multiplicity of causes, research at the cellular level, such as that of Firestein and her Rutgers team, is creating an important point of entry for early intervention with therapeutic drugs.


Dendrites are the input centers of neurons -- where nerve cells receive information that they pass on to another nerve cell or to the brain. When there is an abnormal decrease in dendrite branches, there are fewer sites to receive information and communication may be impeded. Individuals with disorders such as autism and Rett syndrome display not only fewer branches, but also show two quite different dendrite patterns. Firestein’s most recent work explores the how and why of dendrite branching and patterning.

"It’s not just how many branches there are, but where they are and the pattern they form," said Firestein, an assistant professor in Rutgers’ department of cell biology and neuroscience. "The patterning actually affects the way a cell signals and understanding the patterning could be just as important as understanding how many branches are there. Ultimately, this could lead to new drugs designed to modulate the patterning activity."

Firestein has worked extensively with cypin, a protein that regulates dendrite numbers (a news release is posted online at ur.rutgers.edu/medrel/viewArticle.html?ArticleID=3708). Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton. Now Firestein’s research group has turned its attention to the protein snapin. When snapin binds to cypin, tubulin is crowded out, so fewer dendrites assemble and more branching occurs.

When researchers overexpressed snapin in hippocampal neurons in the lab, the number of primary dendrites growing out of the cell body decreased, but many more secondary dendrites branched off them.

"This is significant not just in identifying snapin as a protein that shapes the dendrites, but also in pinpointing a drug target where one can regulate the interaction of snapin with cypin," Firestein explained.

Both of these proteins have many other functions in the nerve cell environment and elsewhere in the body. "We need to change cypin’s function for branching but not its other functions," Firestein said. "Rather than a drug that blocks cypin, we need a drug that affects the binding between the cypin and snapin. This is easier to design and cypin can still function with the other proteins it binds to."

Firestein’s goal is to build "a core pathway of dendric branching" – a sequence of steps, each affecting the next, with cypin at the center. "Our pathway says cypin does this; now what regulates cypin? Here snapin has a role. And what does snapin regulate?" said Firestein. "Our hope is in ten years, we will have a whole pathway mapped out so that we can target different points in the pathway with new drugs."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu
http://www.molbiolcell.org/in_press.shtml

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>