Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mystery of protein synthesis solved


Five years ago x-ray crystallography made it possible for the first time to study ribosomes in cells, where the all-important synthesis of proteins takes place. But it hasnt been understood just how amino acids are joined together to form proteins. Now researchers at Uppsala University have discovered the only possible mechanism and have used it to explain a number of biochemical experiments.

The new findings, being published in the latest issue of Proceedings of the National Academy of Sciences, PNAS, are the answer to one of the hottest unsolved mysteries about exactly how protein synthesis takes place. The translation of the genetic code in the production of new proteins is one of the most central processes in living organisms. This takes place in the ribosomes of cells, which are large complexes of nucleic acids and proteins consisting of roughly a million atoms. After decades of biochemical research into how ribosomes function, major breakthroughs were made five years ago when American and British research teams managed to determine the detailed atomic structure of ribosomes with the aid of x-ray crystallography. This enabled scientists to see directly how the components needed for protein synthesis are arrayed three-dimensionally in the ribosome. Among other things, it was shown that none of the protein components participate directly in the chemical reaction in which amino acids are joined together, but rather that the reaction must by catalyzed by the ribosomes nucleic acids (RNA).

- This squares with the notion that there once was an RNA world, before our present-day, sophisticated enzymes had developed. In other words, it is believed that the ribosome, which is a primeval biological “machine”, might still show traces of this time, says Johan Åqvist, professor at the Department of Cell and Molecular Biology at Uppsala university.

The ribosome structure clearly showed how the genetic code is read, but the question remained how the catalytic process itself takes place, where amino acids are linked together to form new proteins. Using massive computer calculations, Johan Åqvist and doctoral student Stefan Trobro have now managed to simulate protein synthesis reactions and have examined several possible chemical mechanisms.

- Our findings show that there is only one possible type of mechanism, and we have been able give a detailed account of how it works and why the reaction proceeds so rapidly, says Johan Åqvist.

The theoretical calculations also serve to explain a number of biochemical experiments from recent years.

Anneli Waara | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>