Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of protein synthesis solved

25.08.2005


Five years ago x-ray crystallography made it possible for the first time to study ribosomes in cells, where the all-important synthesis of proteins takes place. But it hasnt been understood just how amino acids are joined together to form proteins. Now researchers at Uppsala University have discovered the only possible mechanism and have used it to explain a number of biochemical experiments.



The new findings, being published in the latest issue of Proceedings of the National Academy of Sciences, PNAS, are the answer to one of the hottest unsolved mysteries about exactly how protein synthesis takes place. The translation of the genetic code in the production of new proteins is one of the most central processes in living organisms. This takes place in the ribosomes of cells, which are large complexes of nucleic acids and proteins consisting of roughly a million atoms. After decades of biochemical research into how ribosomes function, major breakthroughs were made five years ago when American and British research teams managed to determine the detailed atomic structure of ribosomes with the aid of x-ray crystallography. This enabled scientists to see directly how the components needed for protein synthesis are arrayed three-dimensionally in the ribosome. Among other things, it was shown that none of the protein components participate directly in the chemical reaction in which amino acids are joined together, but rather that the reaction must by catalyzed by the ribosomes nucleic acids (RNA).

- This squares with the notion that there once was an RNA world, before our present-day, sophisticated enzymes had developed. In other words, it is believed that the ribosome, which is a primeval biological “machine”, might still show traces of this time, says Johan Åqvist, professor at the Department of Cell and Molecular Biology at Uppsala university.


The ribosome structure clearly showed how the genetic code is read, but the question remained how the catalytic process itself takes place, where amino acids are linked together to form new proteins. Using massive computer calculations, Johan Åqvist and doctoral student Stefan Trobro have now managed to simulate protein synthesis reactions and have examined several possible chemical mechanisms.

- Our findings show that there is only one possible type of mechanism, and we have been able give a detailed account of how it works and why the reaction proceeds so rapidly, says Johan Åqvist.

The theoretical calculations also serve to explain a number of biochemical experiments from recent years.

Anneli Waara | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/0504043102v1
http://www.uu.se

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>