Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Target Found to Fight, Treat Parkinson’s

24.08.2005


Neuroscientists from the University at Buffalo have described for the first time how rotenone, an environmental toxin linked specifically to Parkinson’s disease, selectively destroys the neurons that produce dopamine, the neurotransmitter critical to body movement and muscle control.



Microtubules, intracellular highways that transport dopamine to the brain area that controls body movement, are the crucial target, they report.

Damage to microtubules prevents dopamine from reaching the brain’s movement center, causing a back-up of the neurotransmitter in the transport system, the researchers found. The backed-up dopamine accumulates in the body of the neuron and breaks down, causing a release of toxic free radicals, which destroy the neuron.


The study appeared in the Aug. 9 issue of the Journal of Biological Chemistry.

"This study shows how an environmental toxin affects the survival of dopamine neurons by targeting microtubules that are critical for the survival of dopamine-producing neurons," said Jian Feng, Ph.D., assistant professor of physiology and biophysics in the UB School of Medicine and Biomedical Sciences and senior author on the study.

"Based on these findings, we have identified several ways to stabilize microtubules against the onslaught of rotenone. These results ultimately may lead to novel therapies for Parkinson’s disease."

At least 500,000 people are believed to suffer from Parkinson’s disease in the United States, and about 50,000 new cases are reported annually, according to the National Institutes of Health. These figures are expected to increase as the population ages: The average age of onset is about 60. The disorder appears to be slightly more common in men than women.

Feng and colleagues in the Department of Physiology and Biophysics have concentrated their research on the cellular mechanisms of the disease. They are interested specifically in understanding why rotenone destroys neurons that produce dopamine, while sparing neurons that produce other neurotransmitters.

Using cultures of rat neurons, the researches subjected neurons that produce various types of neurotransmitters to agents that mimic the action of rotenone. These results showed that dopaminergic neurons were destroyed while others survived.

They then topped off the treatment by adding the drug taxol, which stabilizes microtubules and prevents their breakdown. Findings showed that by protecting microtubules, the toxic effect of rotenone on dopamine-producing neurons was greatly reduced.

"Based on these findings, we believe that microtubules are a critical target of PD environmental toxins such as rotenone," said Feng. "Since many microtubule-depolymerizing agents are compounds naturally produced in many plants, our research points to the need to examine their possible link to Parkinson’s disease. In addition, PD has a higher incidence in rural areas and is associated with pesticides and insecticides frequently used in farming practices."

The research also opens up novel avenues for the development of PD therapies by targeting microtubules, he said. Feng and colleagues in his laboratory are working actively towards this goal.

Additional researchers on the study were Yong Ren, Ph.D., Wenhau Liu, Ph.D., Houbo Jiang, Ph.D., and Qian Jiang, Ph.D., post-doctoral associates in the Department of Physiology and Biophysics.

The research is funded by a grant from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>