Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists focus on ’dwarf eye’

24.08.2005


Genetic finding may have implications for farsightedness and nearsightedness, too.



Working with an Amish-Mennonite family tree, Johns Hopkins researchers at the Wilmer Eye Institute have discovered what appears to be the first human gene mutation that causes extreme farsightedness.

The researchers report that nanophthalmos, Greek for "dwarf eye," is a rare, potentially blinding disorder caused by an alteration in a gene called MFRP that helps control eye growth and regulates the organ’s shape and focus. The study is described in the July 5 issue of the Proceedings of the National Academy of Sciences.


"The MFRP protein is only made in a tiny portion of the human eye, and it can alter eye refraction, or focus," said Olof Sundin, Ph.D., assistant professor of ophthalmology at the Johns Hopkins School of Medicine in the Wilmer Eye Institute. "We hope this protein holds the key to unlocking not only nanophthalmos, but other forms of farsightedness and nearsightedness as well."

Hyperopia (farsightedness) and myopia (nearsightedness) -- the ability to see only distant or near objects clearly, respectively -- stems from the complex growth of the human eye. All human eyes have a slight degree of farsightedness at birth. As the child grows and gains more visual experience, the eye adjusts its focus by growing, which changes the distance between the lens and the retina, the light-detecting layer of cells at the back of the eye. Once the retina is the right distance from the lens for proper focus of images on the retina, a largely unknown mechanism that uses visual experience causes the eye to stop growing.

Due to natural genetic mutations, some eyes continue to grow beyond this point, causing nearsightedness. Other mutations cause the eye to stop growing too soon, causing farsightedness. In the case of nanophthalmos, a mutation in MFRP completely wipes out the function of the protein coded for by the gene. In people with this condition, the retina is too close to the lens, but the lens and cornea, the eye’s outermost layer, are of normal size and shape.

"Eyes with nanophthalmos still work quite well, despite these complications," said Sundin. "But the disease’s secondary complications later in life, including glaucoma or detached retina, are far more severe and can lead to complete blindness."

One such patient with nanophthalmos, an Amish-Mennonite woman who was blind in one eye, came to the Wilmer Eye Institute in 1998 for treatment. By reconstructing the woman’s family tree, the researchers discovered that several living relatives also suffered from nanophthalmos, and four deceased relatives had been part of the classic Johns Hopkins Bloomberg School of Public Health study in the 1970s that helped define the disease as genetic.

In Sundin’s study, the researchers examined the woman’s DNA for possible gene mutations causing nanophthalmos. According to Sundin, MFRP was a surprise candidate.

"Mutant MFRP was recently identified in mice as a cause of retinal degeneration, not extreme farsightedness," he said. "However, a mouse’s eyes do not adjust their focus through growth like human eyes do, so MFRP has a completely different function in mice and was not assumed to alter eye refraction in humans."

The research team successfully mapped the MFRP gene mutation in humans and discovered that the protein was completely missing from nanophthalmos patients.

In a normal human eye, the MFRP protein is located on the surface of the retinal pigment epithelium (RPE), which is located beneath the retina and helps maintain photoreceptors, the eye’s light-detecting cells. Blindness occurs when these cells die after detachment of the retina from the RPE.

Beneath the RPE are two layers of structural tissue that give the eye its shape. During childhood, these tissues stretch, like a balloon, as the eye grows. "The RPE is believed to be the key link in signaling these tissues to stretch," said Sundin. "And MFRP, located exclusively in the RPE and nowhere else in the body, is likely involved in that signaling process."

Sundin plans to further investigate MFRP and ultimately develop drugs to regulate the gene’s function. He hopes the information gained from his study will open doors to correcting other types of severe refractive error, not only farsightedness, but also nearsightedness.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>