Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria are key to ’green’ plastics, drugs

24.08.2005


Engineered bug makes key chemical precursor from grain sorghum



Trials have begun in Kansas on a "green" production method for succinate, a key ingredient of many plastics, drugs, solvents and food additives. Developed at Rice University, the technology uses a genetically modified form of the bacteria E. coli that metabolizes glucose and produces almost pure succinate.

Finding "green" methods to make key chemical intermediates like succinate is a high priority for the chemical industry. Green technologies use renewable resources like agricultural crops rather than non-renewable fossil fuels, and they produce less waste.


"Succinate is a high-priority chemical that the U.S. Department of Energy has targeted for biosynthesis," said process co-developer George Bennett, professor and chair of the department of biochemistry and cell biology at Rice. "One reason for this is succinate’s broad utility -- it can be used to make everything from non-corrosive airport deicers and non-toxic solvents to plastics, drugs and food additives. Succinate’s also a priority because some bacteria make it naturally, so we have a metabolic starting place for large-scale fermentation."

The centerpiece of Rice’s succinate technology is a mutant form of E. coli that makes succinate as it’s only metabolic byproduct. The bug contains more than a half-dozen genetic modifications. It was created over the past four years by the research groups of Bennett and collaborator Ka-Yiu San, the E.D. Butcher Professor of Bioengineering and professor of chemical and biomolecular engineering.

The technology is taking its first step from the lab to the marketplace this month with the start of industrial scale-up efforts in Kansas. These efforts resulted from an $80,000 award from the Small Business Innovation Research (SBIR) program of the U.S. Department of Agriculture. Bennett and San are working with Manhattan, Kansas-based AgRenew Inc., which just began testing how to use farm-grown products like grain sorghum as feedstocks for the succinate-producing bacteria.

"We are very pleased for the opportunity to continue our collaboration with our colleagues from Rice and work to further the development and commercialization of the succinate technology," said Praveen Vadlani, principal research scientist for AgRenew. "We are excited about the prospects this project offers to meet a market need for the benefit of both institutions and American agriculture itself. We also appreciate the support of the U.S. Department of Agriculture for this work to create another high-value product from agriculture."

Many researchers are trying to create a succinate-producing bacterial mutant. They use biotechnology to either insert genes that boost succinate production or delete genes that interfere with it. The goal is to maximize the rate -- the speed of the conversion -- and the yield -- the amount of succinate produced per pound of glucose converted.

Bennett and San’s bug -- known only by the designation SBS550MG -- contains an ingenious bit of metabolic engineering that allows it to produce succinate in two different ways. One method exists in wild strains of E. coli and has been modified with the deletion of four genes, each of which codes for a protein that interferes with or limits E. coli’s ability to turn glucose into succinate. Bennett and San activated a second pathway and stimulated production by adding genes from lactococcus bacteria and sorghum.

Each genetic pathway metabolizes glucose and produces succinate via dissimilar chemical reactions. That means the two don’t compete or interfere with one another. In fact, Bennett and San designed the paths to be complimentary, but even so, they were gratified to see how well the process worked once both paths were put in place.

"Our experiments in the laboratory have produced near-maximum yields, with almost all the glucose being converted into succinate," said San. "The implementation was actually easier than we expected because the cells did the balancing themselves."

Bennett and San said they will continue to refine the organism to produce higher yields and fewer byproducts.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>