Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study finds a new role for RNA in human immune response

24.08.2005


Findings could lead to new types of therapeutic RNAs for cancer, genetic diseases



Researchers at the University of Pennsylvania School of Medicine have published the first study to test the role of RNA chemical modifications on immunity. They have demonstrated that RNA from bacteria stimulates immune cells to orchestrate destruction of invading pathogens. Most RNA from human cells is recognized as being self and does not stimulate an immune response to the same extent as invading bacteria or viruses. The researchers hypothesize that if this self-recognition fails, then autoimmune diseases such as systemic lupus erythematosus could result.

The research was a collaborative work led by Drew Weissman, MD, PhD, of the Division of Infectious Diseases and Katalin Karikó, PhD, of the Department of Neurosurgery. The investigators published their findings in the August issue of Immunity. "We think this study will open a new area of research in understanding how our immune systems protect us," says Weissman.


"One application of our findings is that scientists will be able to design better therapeutic RNAs, including anti-sense or small-interfering RNAs, for treating diseases such as cancer and single-gene genetic diseases," says Karikó.

RNA is the genetic material that programs cells to make proteins from DNA’s blueprint and specifies which proteins should be made. There are many types of RNA in the cells of mammals, such as transfer RNA, ribosomal RNA, messenger RNA, and all of them have specific types of chemical tags, or modifications. In contrast, RNAs from bacteria have fewer or no modifications.

Another type of RNA in mammalian cells is found in mitochondria, the powerhouses of cells. Mitochondrial RNA is thought to have originated from bacteria millions of years ago. Similar to RNA from bacteria, mitochondrial RNA has fewer chemical tags. It is the absence of modifications that causes RNA from bacteria and mitochondria to activate the immune response. The researchers suggest that these modifications have evolved in animals as one of the ways for the innate immune system to discriminate self from non-self.

When a tissue is damaged by injury, infection, or inflammation, cells release their mitochondrial RNA. This RNA acts as a signal to the immune system to recognize the damage and help defend and repair the tissue.

Conversely, the presence of the modifications on the other types of RNA does not activate an immune response and thus allows the innate immune system to discriminate self from non-self. "We showed that special proteins on the surface of immune cells, called Toll-like receptors, are instrumental in recognizing bacterial and mitochondrial RNA," explains Weissman. The amount of modification on the RNA is important because as little as one or two tags per RNA molecule could prevent or suppress the immune reaction.

The authors concluded that the potential of RNA to activate immunity seems to be inversely correlated with the extent of its chemical modification and may explain why some viral RNA that is overly modified evades immune surveillance. The authors plan to investigate whether longer RNAs with specific tags will be useful for delivering therapeutic molecules to diseased cells.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>