Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make first step towards growing human lungs for transplant

23.08.2005


Scientists have successfully converted human embryonic stem cells into lung cells, taking a first step towards building human lungs for transplantation.



According to research to be published in the journal Tissue Engineering, the team from Imperial College London, took human embryonic stem cells and ’directed’ them to convert into the type of cells needed for gas exchange in the lung, known as mature small airway epithelium.

Dame Professor Julia Polak, from Imperial College London, who led the research team, says: "This is a very exciting development, and could be a huge step towards being able to build human lungs for transplantation or to repair lungs severely damaged by incurable diseases such as cancer."


The research involved taking human embryonic stem cells and growing them in Petri dishes in the laboratory in a specialized system that encouraged them to change into the cells that line the part of the lung where oxygen is absorbed and carbon dioxide excreted. Although this was done in the first instance on embryonic stem cells, the system will be tested further on stem cells from other sources, including umbilical cord blood and bone marrow.

Dr Anne Bishop, from Imperial College London and based at Chelsea and Westminster Hospital, and senior author of the paper, adds: "Although it will be some years before we are able to build actual human lungs for transplantation, this is a major step towards deriving cells that could be used to repair damaged lungs."

Following further laboratory tests, the researchers plan to use their findings to treat problems such as acute respiratory distress syndrome (ARDS), a condition which causes the lining of the cells to fall off, and which currently kills many intensive care patients. By injecting stem cells that will become lung cells, they hope to be able to repopulate the lung lining.

Tony Stephenson | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>