Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists make first step towards growing human lungs for transplant


Scientists have successfully converted human embryonic stem cells into lung cells, taking a first step towards building human lungs for transplantation.

According to research to be published in the journal Tissue Engineering, the team from Imperial College London, took human embryonic stem cells and ’directed’ them to convert into the type of cells needed for gas exchange in the lung, known as mature small airway epithelium.

Dame Professor Julia Polak, from Imperial College London, who led the research team, says: "This is a very exciting development, and could be a huge step towards being able to build human lungs for transplantation or to repair lungs severely damaged by incurable diseases such as cancer."

The research involved taking human embryonic stem cells and growing them in Petri dishes in the laboratory in a specialized system that encouraged them to change into the cells that line the part of the lung where oxygen is absorbed and carbon dioxide excreted. Although this was done in the first instance on embryonic stem cells, the system will be tested further on stem cells from other sources, including umbilical cord blood and bone marrow.

Dr Anne Bishop, from Imperial College London and based at Chelsea and Westminster Hospital, and senior author of the paper, adds: "Although it will be some years before we are able to build actual human lungs for transplantation, this is a major step towards deriving cells that could be used to repair damaged lungs."

Following further laboratory tests, the researchers plan to use their findings to treat problems such as acute respiratory distress syndrome (ARDS), a condition which causes the lining of the cells to fall off, and which currently kills many intensive care patients. By injecting stem cells that will become lung cells, they hope to be able to repopulate the lung lining.

Tony Stephenson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>