Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overbearing colored light may reveal a second mechanism by which birds interpret magnetic signals

23.08.2005


Magnetic orientation is critical to the migratory success of many bird species. By studying the influence of light on the ability of migratory birds to orient to magnetic signals, researchers have found clues to suggest that birds’ orientation abilities may be more complex than previously thought and that birds may be able to interpret magnetic signals by more than one mechanism. The work is reported in Current Biology by a team including Thorsten Ritz, of the University of California, Irvine, and Wolfgang and Roswitha Wiltschko, of the University of Frankfurt, Germany.



It has been known for many years that birds possess a magnetic "inclination compass," which essentially allows birds to obtain directional information from the magnetic field by interpreting the angle of magnetic-field lines with regard to the horizon rather than by interpreting the magnetic field’s polarity. Previous work by Dr. Ritz had suggested that in interpreting magnetic signals, birds employed a so-called chemical compass that worked by way of chemical reactions in specialized photopigments in their eyes. The chemical-compass idea implied that magnetoreception was light dependent, and this possibility was subsequently given support by work from the Wiltschko team showing that the orientation of European robins, a night-migrating species, was influenced by the intensity of light in the blue-green spectrum.

In the present study, the Ritz and Wiltschko groups teamed up to analyze the orientation behavior under turquoise light in detail and revealed an unexpected phenomenon: Increasing the intensity of turquoise light changes the birds’ orientation significantly, in comparison to dimmer light levels. The researchers found that in dim turquoise light, similar to that found about 33 minutes after sunset, the birds show normal migratory orientation, with the seasonal shift between southerly directions in autumn and northerly directions in spring. Tests under specific magnetic conditions clearly showed that this orientation involved the inclination compass and suggested that it is based on the type of "chemical compass" processes predicted by the Ritz model.


However, the researchers also found that under brighter turquoise light, corresponding to light levels found 20 min after sunset, the birds still orient by the magnetic field, but they no longer show the seasonal change between spring and autumn and instead head north in both seasons. This behavior did not appear to involve the normal inclination-compass and chemical-compass mechanisms.

The new findings show that bright-colored light interferes with magnetoreception such that migratory birds can no longer obtain the information required to head into their migratory direction. The findings point to the existence of two distinct mechanisms of mechanoreception in the birds--an inclination compass and a polarity-driven compass. It is especially intriguing that under some conditions, birds appear to switch to the polarity-type magnetic response, which is based on a mechanism of a very different nature than that thought to contribute to the inclination mechanism.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>