Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of flower genes reveals the fate of an ancient gene duplication

23.08.2005


In a step that advances our ability to discern the ancient evolutionary relationships between different genes and their biological functions, researchers have provided insight into the present-day outcome of a single gene duplication that occurred over a hundred million years ago in an ancestor of modern plants. The work is reported in Current Biology by a team led by Brendan Davies of the University of Leeds, England.

Gene duplication--a relatively uncommon event in which a single copy of a gene is transformed into two separate copies--is thought to play a key role in the evolution of new gene functions. Duplications are important because they effectively allow at least one of the gene copies to evolve while the (likely important) function of the original gene can remain intact. In this way, the duplication of pre-existing genetic information provides the raw material from which new gene functions can evolve, thereby contributing to the evolution of genetic complexity and the evolution of sophisticated life forms.

Very many such gene-duplication events have shaped the evolution of today’s living species, but tracing the evolution of a specific single gene over millions of years of evolution--and over potentially several gene-duplication events--can pose a significant challenge. One way in which this can be overcome is for researchers studying a particular modern-day gene to look at neighboring genes in different related species. Genes derived from a common ancestral gene region will still share similarities in neighboring gene sequences, both in terms of gene identity and the order such sequences appear within the chromosome. This kind of preserved gene order is known as genome synteny.



In the new work, researchers have used synteny to clarify the evolution of genes essential for the development of floral reproductive organs, stamens and carpels. The subjects of their work were two genes that appear to play identical functions in two different plant species: the AGAMOUS (AG) gene of the mustard plant Arabidopsis thaliana and the PLENA (PLE) gene of the snapdragon, Antirrhinum majus. Both genes are required for the development of flower reproductive structures, and when these genes are mutated, the plants form so-called double flowers, in which petals and sepals replace stamens and carpels. AG and PLE are very closely related genes, and they clearly have nearly identical function, suggesting that they are derived from the same single gene inherited from a common ancestor. However, analysis of synteny in the AG and PLE regions unambiguously showed that AG and PLE are not derived from the same ancestral gene, but that they instead represent two different products of a gene-duplication event that occurred around 125 million years ago in a common ancestor of Arabidopsis and Antirrhinum. The other genes created in that ancient gene-duplication event became altered, in different ways, so that they now have new functions in Arabidopsis and Antirrhinum.

These findings provide one of the first demonstrations of how an essential developmental function can be randomly assigned to either product of a gene-duplication event. The work defines a new standard for the evidence required to establish the evolutionary relationships of genes from different species.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>