Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of flower genes reveals the fate of an ancient gene duplication

23.08.2005


In a step that advances our ability to discern the ancient evolutionary relationships between different genes and their biological functions, researchers have provided insight into the present-day outcome of a single gene duplication that occurred over a hundred million years ago in an ancestor of modern plants. The work is reported in Current Biology by a team led by Brendan Davies of the University of Leeds, England.

Gene duplication--a relatively uncommon event in which a single copy of a gene is transformed into two separate copies--is thought to play a key role in the evolution of new gene functions. Duplications are important because they effectively allow at least one of the gene copies to evolve while the (likely important) function of the original gene can remain intact. In this way, the duplication of pre-existing genetic information provides the raw material from which new gene functions can evolve, thereby contributing to the evolution of genetic complexity and the evolution of sophisticated life forms.

Very many such gene-duplication events have shaped the evolution of today’s living species, but tracing the evolution of a specific single gene over millions of years of evolution--and over potentially several gene-duplication events--can pose a significant challenge. One way in which this can be overcome is for researchers studying a particular modern-day gene to look at neighboring genes in different related species. Genes derived from a common ancestral gene region will still share similarities in neighboring gene sequences, both in terms of gene identity and the order such sequences appear within the chromosome. This kind of preserved gene order is known as genome synteny.



In the new work, researchers have used synteny to clarify the evolution of genes essential for the development of floral reproductive organs, stamens and carpels. The subjects of their work were two genes that appear to play identical functions in two different plant species: the AGAMOUS (AG) gene of the mustard plant Arabidopsis thaliana and the PLENA (PLE) gene of the snapdragon, Antirrhinum majus. Both genes are required for the development of flower reproductive structures, and when these genes are mutated, the plants form so-called double flowers, in which petals and sepals replace stamens and carpels. AG and PLE are very closely related genes, and they clearly have nearly identical function, suggesting that they are derived from the same single gene inherited from a common ancestor. However, analysis of synteny in the AG and PLE regions unambiguously showed that AG and PLE are not derived from the same ancestral gene, but that they instead represent two different products of a gene-duplication event that occurred around 125 million years ago in a common ancestor of Arabidopsis and Antirrhinum. The other genes created in that ancient gene-duplication event became altered, in different ways, so that they now have new functions in Arabidopsis and Antirrhinum.

These findings provide one of the first demonstrations of how an essential developmental function can be randomly assigned to either product of a gene-duplication event. The work defines a new standard for the evidence required to establish the evolutionary relationships of genes from different species.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>