Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversal of role for a viral protein associated with the development of lymphoma

23.08.2005


Protein thought to promote lymphoma by merely preventing cancer cells from dying appears to actively promote cancer cell growth



A protein previously thought to merely hinder the activity of a key cellular protein linked to cancer cell death, now appears to mimic the cellular signaling of that protein; potentially leading to the development of lymphoma. The findings, published in the Aug. 22 online edition of Proceedings of the National Academy of Sciences (PNAS), demonstrate that a viral protein associated with human herpesvirus 8, or HHV8, may help to cause lymphoma by activating a key pathway involved in the production of lymphocytes, a common cell type found in lymphoid tissue that divide over and over and eventually develop into lymphoma.

The protein, called vFLIP K13, had been thought to protect virally infected cells from attack by the body’s own immune system by inhibiting the activity of a cellular protein called caspase 8 that is associated with apoptosis, or programmed cell death. However, when Preet M. Chaudhary, M.D., Ph.D., senior author of the study and professor of medicine at the University of Pittsburgh School of Medicine, and his colleagues analyzed transgenic mice expressing vFLIP K13, they found that vFLIP K13 failed to block cell death pathways and instead mimicked a recently discovered signaling function of caspase 8, which led to the proliferation of lymphocytes.


Dr. Chaudhary and his colleagues observed tumor formation in 59 mice over the course of 30 months. They found that the vFLIP-expressing transgenic mice had more lymphomas than the control group mice; 11.8 percent compared 1.8 percent, respectively.

"We were surprised to see that the mouse model we developed based on vFLIP K13 did not look like the other models in which caspase 8 function was inhibited," said Dr. Chaudhary. "It indicated to us that the main function of this protein is not to block caspase 8 activation."

Further analysis also revealed that instead of inhibiting caspase 8, vFLIP K13 copied its signaling activity resulting in the activation of a distinct cellular pathway called NF-?B that is involved in the development of lymphoma. "In effect, vFLIP K13 actively promoted the growth of cancer cells through this pathway. Based on these findings, we believe the NF-?B pathway may be a promising target for novel therapies directed against HHV8-associated tumors," said Dr. Chaudhary. He added that there is a dire need for new therapies that target this disease since most patients with HHV8-associated lymphomas are highly immune suppressed and are difficult to treat given the toxicity associated with conventional therapies.

In addition to its role in the development of HHV8-associated cancers, the NF-?B pathway also may be implicated in lymphomas that are not caused by HHV8. "There are potentially widespread applications of this finding and our next step will be to discover how involved this pathway is in the development of lymphomas that are not associated with HHV8," said Dr. Chaudhary.

Lymphoma is a general term for a group of cancers that originate in the lymphatic system. They begin with the malignant transformation of a lymphocyte in the lymphatic system. The American Cancer Society estimates that 63,740 people in the U.S. will be newly diagnosed with lymphoma by the end of 2005.

HHV8, originally linked to Kaposi’s sarcoma –the most common cancer among AIDS patients – also is associated with lymphoid diseases such as primary effusion lymphoma and multicentric Castleman’s disease, a noncancerous but severe disorder characterized by enlargement of the lymph nodes. Recent studies have also linked HHV8 infection to HIV-related solid immunoblastic/plasmablastic lymphomas.

In addition to Dr. Chaudhary, authors on the study include Priti Chugh, Ph.D., Sunny Zachariah, M.S., Arvind Kumar, Ph.D., Alice L. Smith, M.D., and James A. Richardson, Ph.D., Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas; and Hittu Matta, Ph.D., and Sandra Schamus, B.S., Hillman Cancer Center, University of Pittsburgh Cancer Institute.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>