Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversal of role for a viral protein associated with the development of lymphoma

23.08.2005


Protein thought to promote lymphoma by merely preventing cancer cells from dying appears to actively promote cancer cell growth



A protein previously thought to merely hinder the activity of a key cellular protein linked to cancer cell death, now appears to mimic the cellular signaling of that protein; potentially leading to the development of lymphoma. The findings, published in the Aug. 22 online edition of Proceedings of the National Academy of Sciences (PNAS), demonstrate that a viral protein associated with human herpesvirus 8, or HHV8, may help to cause lymphoma by activating a key pathway involved in the production of lymphocytes, a common cell type found in lymphoid tissue that divide over and over and eventually develop into lymphoma.

The protein, called vFLIP K13, had been thought to protect virally infected cells from attack by the body’s own immune system by inhibiting the activity of a cellular protein called caspase 8 that is associated with apoptosis, or programmed cell death. However, when Preet M. Chaudhary, M.D., Ph.D., senior author of the study and professor of medicine at the University of Pittsburgh School of Medicine, and his colleagues analyzed transgenic mice expressing vFLIP K13, they found that vFLIP K13 failed to block cell death pathways and instead mimicked a recently discovered signaling function of caspase 8, which led to the proliferation of lymphocytes.


Dr. Chaudhary and his colleagues observed tumor formation in 59 mice over the course of 30 months. They found that the vFLIP-expressing transgenic mice had more lymphomas than the control group mice; 11.8 percent compared 1.8 percent, respectively.

"We were surprised to see that the mouse model we developed based on vFLIP K13 did not look like the other models in which caspase 8 function was inhibited," said Dr. Chaudhary. "It indicated to us that the main function of this protein is not to block caspase 8 activation."

Further analysis also revealed that instead of inhibiting caspase 8, vFLIP K13 copied its signaling activity resulting in the activation of a distinct cellular pathway called NF-?B that is involved in the development of lymphoma. "In effect, vFLIP K13 actively promoted the growth of cancer cells through this pathway. Based on these findings, we believe the NF-?B pathway may be a promising target for novel therapies directed against HHV8-associated tumors," said Dr. Chaudhary. He added that there is a dire need for new therapies that target this disease since most patients with HHV8-associated lymphomas are highly immune suppressed and are difficult to treat given the toxicity associated with conventional therapies.

In addition to its role in the development of HHV8-associated cancers, the NF-?B pathway also may be implicated in lymphomas that are not caused by HHV8. "There are potentially widespread applications of this finding and our next step will be to discover how involved this pathway is in the development of lymphomas that are not associated with HHV8," said Dr. Chaudhary.

Lymphoma is a general term for a group of cancers that originate in the lymphatic system. They begin with the malignant transformation of a lymphocyte in the lymphatic system. The American Cancer Society estimates that 63,740 people in the U.S. will be newly diagnosed with lymphoma by the end of 2005.

HHV8, originally linked to Kaposi’s sarcoma –the most common cancer among AIDS patients – also is associated with lymphoid diseases such as primary effusion lymphoma and multicentric Castleman’s disease, a noncancerous but severe disorder characterized by enlargement of the lymph nodes. Recent studies have also linked HHV8 infection to HIV-related solid immunoblastic/plasmablastic lymphomas.

In addition to Dr. Chaudhary, authors on the study include Priti Chugh, Ph.D., Sunny Zachariah, M.S., Arvind Kumar, Ph.D., Alice L. Smith, M.D., and James A. Richardson, Ph.D., Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas; and Hittu Matta, Ph.D., and Sandra Schamus, B.S., Hillman Cancer Center, University of Pittsburgh Cancer Institute.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>