Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversal of role for a viral protein associated with the development of lymphoma

23.08.2005


Protein thought to promote lymphoma by merely preventing cancer cells from dying appears to actively promote cancer cell growth



A protein previously thought to merely hinder the activity of a key cellular protein linked to cancer cell death, now appears to mimic the cellular signaling of that protein; potentially leading to the development of lymphoma. The findings, published in the Aug. 22 online edition of Proceedings of the National Academy of Sciences (PNAS), demonstrate that a viral protein associated with human herpesvirus 8, or HHV8, may help to cause lymphoma by activating a key pathway involved in the production of lymphocytes, a common cell type found in lymphoid tissue that divide over and over and eventually develop into lymphoma.

The protein, called vFLIP K13, had been thought to protect virally infected cells from attack by the body’s own immune system by inhibiting the activity of a cellular protein called caspase 8 that is associated with apoptosis, or programmed cell death. However, when Preet M. Chaudhary, M.D., Ph.D., senior author of the study and professor of medicine at the University of Pittsburgh School of Medicine, and his colleagues analyzed transgenic mice expressing vFLIP K13, they found that vFLIP K13 failed to block cell death pathways and instead mimicked a recently discovered signaling function of caspase 8, which led to the proliferation of lymphocytes.


Dr. Chaudhary and his colleagues observed tumor formation in 59 mice over the course of 30 months. They found that the vFLIP-expressing transgenic mice had more lymphomas than the control group mice; 11.8 percent compared 1.8 percent, respectively.

"We were surprised to see that the mouse model we developed based on vFLIP K13 did not look like the other models in which caspase 8 function was inhibited," said Dr. Chaudhary. "It indicated to us that the main function of this protein is not to block caspase 8 activation."

Further analysis also revealed that instead of inhibiting caspase 8, vFLIP K13 copied its signaling activity resulting in the activation of a distinct cellular pathway called NF-?B that is involved in the development of lymphoma. "In effect, vFLIP K13 actively promoted the growth of cancer cells through this pathway. Based on these findings, we believe the NF-?B pathway may be a promising target for novel therapies directed against HHV8-associated tumors," said Dr. Chaudhary. He added that there is a dire need for new therapies that target this disease since most patients with HHV8-associated lymphomas are highly immune suppressed and are difficult to treat given the toxicity associated with conventional therapies.

In addition to its role in the development of HHV8-associated cancers, the NF-?B pathway also may be implicated in lymphomas that are not caused by HHV8. "There are potentially widespread applications of this finding and our next step will be to discover how involved this pathway is in the development of lymphomas that are not associated with HHV8," said Dr. Chaudhary.

Lymphoma is a general term for a group of cancers that originate in the lymphatic system. They begin with the malignant transformation of a lymphocyte in the lymphatic system. The American Cancer Society estimates that 63,740 people in the U.S. will be newly diagnosed with lymphoma by the end of 2005.

HHV8, originally linked to Kaposi’s sarcoma –the most common cancer among AIDS patients – also is associated with lymphoid diseases such as primary effusion lymphoma and multicentric Castleman’s disease, a noncancerous but severe disorder characterized by enlargement of the lymph nodes. Recent studies have also linked HHV8 infection to HIV-related solid immunoblastic/plasmablastic lymphomas.

In addition to Dr. Chaudhary, authors on the study include Priti Chugh, Ph.D., Sunny Zachariah, M.S., Arvind Kumar, Ph.D., Alice L. Smith, M.D., and James A. Richardson, Ph.D., Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas; and Hittu Matta, Ph.D., and Sandra Schamus, B.S., Hillman Cancer Center, University of Pittsburgh Cancer Institute.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>