Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversal of role for a viral protein associated with the development of lymphoma

23.08.2005


Protein thought to promote lymphoma by merely preventing cancer cells from dying appears to actively promote cancer cell growth



A protein previously thought to merely hinder the activity of a key cellular protein linked to cancer cell death, now appears to mimic the cellular signaling of that protein; potentially leading to the development of lymphoma. The findings, published in the Aug. 22 online edition of Proceedings of the National Academy of Sciences (PNAS), demonstrate that a viral protein associated with human herpesvirus 8, or HHV8, may help to cause lymphoma by activating a key pathway involved in the production of lymphocytes, a common cell type found in lymphoid tissue that divide over and over and eventually develop into lymphoma.

The protein, called vFLIP K13, had been thought to protect virally infected cells from attack by the body’s own immune system by inhibiting the activity of a cellular protein called caspase 8 that is associated with apoptosis, or programmed cell death. However, when Preet M. Chaudhary, M.D., Ph.D., senior author of the study and professor of medicine at the University of Pittsburgh School of Medicine, and his colleagues analyzed transgenic mice expressing vFLIP K13, they found that vFLIP K13 failed to block cell death pathways and instead mimicked a recently discovered signaling function of caspase 8, which led to the proliferation of lymphocytes.


Dr. Chaudhary and his colleagues observed tumor formation in 59 mice over the course of 30 months. They found that the vFLIP-expressing transgenic mice had more lymphomas than the control group mice; 11.8 percent compared 1.8 percent, respectively.

"We were surprised to see that the mouse model we developed based on vFLIP K13 did not look like the other models in which caspase 8 function was inhibited," said Dr. Chaudhary. "It indicated to us that the main function of this protein is not to block caspase 8 activation."

Further analysis also revealed that instead of inhibiting caspase 8, vFLIP K13 copied its signaling activity resulting in the activation of a distinct cellular pathway called NF-?B that is involved in the development of lymphoma. "In effect, vFLIP K13 actively promoted the growth of cancer cells through this pathway. Based on these findings, we believe the NF-?B pathway may be a promising target for novel therapies directed against HHV8-associated tumors," said Dr. Chaudhary. He added that there is a dire need for new therapies that target this disease since most patients with HHV8-associated lymphomas are highly immune suppressed and are difficult to treat given the toxicity associated with conventional therapies.

In addition to its role in the development of HHV8-associated cancers, the NF-?B pathway also may be implicated in lymphomas that are not caused by HHV8. "There are potentially widespread applications of this finding and our next step will be to discover how involved this pathway is in the development of lymphomas that are not associated with HHV8," said Dr. Chaudhary.

Lymphoma is a general term for a group of cancers that originate in the lymphatic system. They begin with the malignant transformation of a lymphocyte in the lymphatic system. The American Cancer Society estimates that 63,740 people in the U.S. will be newly diagnosed with lymphoma by the end of 2005.

HHV8, originally linked to Kaposi’s sarcoma –the most common cancer among AIDS patients – also is associated with lymphoid diseases such as primary effusion lymphoma and multicentric Castleman’s disease, a noncancerous but severe disorder characterized by enlargement of the lymph nodes. Recent studies have also linked HHV8 infection to HIV-related solid immunoblastic/plasmablastic lymphomas.

In addition to Dr. Chaudhary, authors on the study include Priti Chugh, Ph.D., Sunny Zachariah, M.S., Arvind Kumar, Ph.D., Alice L. Smith, M.D., and James A. Richardson, Ph.D., Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas; and Hittu Matta, Ph.D., and Sandra Schamus, B.S., Hillman Cancer Center, University of Pittsburgh Cancer Institute.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>