Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genomics reveals mechanism of heat resistance in bacteria


Thermophilic bacteria can thrive in extreme heat because their proteins have an abundance of disulfides (yellow, above), covalent bonds between sulfur atoms that improve stability and likely boost heat-tolerance. (Yeates et al.)

Warm-blooded creatures maintain a relatively stable body temperature that cannot tolerate the stress of intense heat (or cold). When it’s too hot proteins destabilize and degrade--in some cases, with fatal results. But some bacterial and archaeal organisms appear to defy nature (as we think of it) by flourishing in extremely high temperatures. The archaeal microbe Pyrobaculum aerophilum, for example--originally found in a boiling marine water hole in Italy--thrives at ~100 °C (212 °F).

Published online this week in the open-access journal PLoS Biology Todd Yeates and colleagues from UCLA have investigated the mechanisms that engineer this remarkable heat resistance. By way of an elegant analysis of publicly available genome sequence and protein structure data, they answer the question: how do these thermophilic bacteria and archaea manage to maintain active, stable proteins at such high temperatures? The authors found that proteins from P. aerophilum along with some other thermophiles have many disulfide bonds (covalent bonds between two spatially proximate cysteines), which are known to improve stability.

By mapping intracellular gene sequences from 199 prokaryote genomes onto sequence-related proteins with known three-dimensional structures, they produced structural models which revealed when disulfide bonds are likely to form. A bias was found for disulfides in a set of thermophilic genomes. To prove that these predictions really do form disulfide bonds, the authors solved the structure of one protein from P. aerophilum--which was indeed stabilized by three disulfide bonds.

Disulfide bonds are more commonly formed outside or between cells in multicellular organisms. The high numbers of bonds observed in these prokaryotes challenge our ideas of how disulfide bonds form. Given the difficulty for disulfides to form in such organisms, the authors investigated which proteins are present in the disulfide-rich organisms as compared with the proteins in other organisms (also known as phylogenetic profiling). They found a protein called protein disulfide oxidoreductase (PDO) present in all of the disulfide-rich thermophiles which is not seen in the other prokaryotes. As its name suggests, this protein likely plays a key role in the formation of disulfides in these heat-tolerant bugs.

Yeates and colleagues have considerably advanced our understanding of how proteins withstand and function at high temperatures via stabilizing disulfide bonds in these thermophilic organisms. Yet, since this correlation of extra disulfides and the PDO is not common to all thermophiles, it is likely that this is not the only method employed in heat resistance. Probably several different mechanisms are employed to enable thermophiles to flourish in extreme conditions. As the authors show here, genome sequence and structure data can help us to uncover these mechanisms.

Paul Ocampo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>