Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomics reveals mechanism of heat resistance in bacteria

23.08.2005


Thermophilic bacteria can thrive in extreme heat because their proteins have an abundance of disulfides (yellow, above), covalent bonds between sulfur atoms that improve stability and likely boost heat-tolerance. (Yeates et al.)


Warm-blooded creatures maintain a relatively stable body temperature that cannot tolerate the stress of intense heat (or cold). When it’s too hot proteins destabilize and degrade--in some cases, with fatal results. But some bacterial and archaeal organisms appear to defy nature (as we think of it) by flourishing in extremely high temperatures. The archaeal microbe Pyrobaculum aerophilum, for example--originally found in a boiling marine water hole in Italy--thrives at ~100 °C (212 °F).

Published online this week in the open-access journal PLoS Biology Todd Yeates and colleagues from UCLA have investigated the mechanisms that engineer this remarkable heat resistance. By way of an elegant analysis of publicly available genome sequence and protein structure data, they answer the question: how do these thermophilic bacteria and archaea manage to maintain active, stable proteins at such high temperatures? The authors found that proteins from P. aerophilum along with some other thermophiles have many disulfide bonds (covalent bonds between two spatially proximate cysteines), which are known to improve stability.

By mapping intracellular gene sequences from 199 prokaryote genomes onto sequence-related proteins with known three-dimensional structures, they produced structural models which revealed when disulfide bonds are likely to form. A bias was found for disulfides in a set of thermophilic genomes. To prove that these predictions really do form disulfide bonds, the authors solved the structure of one protein from P. aerophilum--which was indeed stabilized by three disulfide bonds.



Disulfide bonds are more commonly formed outside or between cells in multicellular organisms. The high numbers of bonds observed in these prokaryotes challenge our ideas of how disulfide bonds form. Given the difficulty for disulfides to form in such organisms, the authors investigated which proteins are present in the disulfide-rich organisms as compared with the proteins in other organisms (also known as phylogenetic profiling). They found a protein called protein disulfide oxidoreductase (PDO) present in all of the disulfide-rich thermophiles which is not seen in the other prokaryotes. As its name suggests, this protein likely plays a key role in the formation of disulfides in these heat-tolerant bugs.

Yeates and colleagues have considerably advanced our understanding of how proteins withstand and function at high temperatures via stabilizing disulfide bonds in these thermophilic organisms. Yet, since this correlation of extra disulfides and the PDO is not common to all thermophiles, it is likely that this is not the only method employed in heat resistance. Probably several different mechanisms are employed to enable thermophiles to flourish in extreme conditions. As the authors show here, genome sequence and structure data can help us to uncover these mechanisms.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org
http://www.plos.org

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>