Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers devise new technique for creating human stem cells

23.08.2005


Researchers have developed a new technique for creating human embryonic stem cells by fusing adult somatic cells with embryonic stem cells. The fusion causes the adult cells to undergo genetic reprogramming, which results in cells that have the developmental characteristics of human embryonic stem cells.



This approach could become an alternative to somatic cell nuclear transfer (SCNT), a method that is currently used to produce human stem cells. SCNT involves transferring the nuclei of adult cells, called somatic cells, into oocytes in which scientists have removed the nuclei.

The researchers said that -- while the technique might one day be used along with SCNT, which involves the use of unfertilized human eggs -- technical hurdles must be cleared before the new technique sees widespread use. It is more likely that the new technique will see immediate use in helping to accelerate understanding of how embryonic cells "reprogram" somatic cells to an embryonic state.


The researchers published their findings in the August 26, 2005, issue of the journal Science. Senior author Kevin Eggan and Howard Hughes Medical Institute investigator Douglas A. Melton, both at Harvard University, led the research team, which also included Harvard colleagues Chad Cowan and Jocelyn Atienza.

In theory, researchers can induce embryonic stem cells to mature into a variety of specialized cells. For that reason, many researchers believe stem cells offer promise for creating populations of specialized cells that can be used to rejuvenate organs, such as the pancreas or heart, that are damaged by disease or trauma. Stem cells also provide a model system in which researchers can study the causes of genetic disease and the basis of embryonic development.

Eggan, Melton and their colleagues decided to pursue their alternative route after other researchers had shown that genetic reprogramming can occur when mouse somatic cells are fused to mouse embryonic stem cells. The scientists knew that if their studies were successful, it would provide the research community with a new option for producing reprogrammed cells using embryonic stem cells, which are more plentiful and easier to obtain than unfertilized human eggs.

In the studies published in Science, the researchers combined human fibroblast cells with human embryonic stem cells in the presence of a detergent-like substance that caused the two cell types to fuse. The researchers demonstrated that they had achieved fusion of the two cell types by searching the fused cells for two distinctive genetic markers present in the somatic fibroblast and stem cells. The researchers were also able to further confirmed that fusion occurred by studying the chromosomal makeup of the fused cells. Their analyses showed that the hybrid cells were "tetraploid" – meaning they contained the combined chromosomes of both the somatic cells and the embryonic stem cells.

One of the key findings from the study was that the fusion cells have the characteristics of human embryonic stem cells. "Our assays showed that the hybrid cells, unlike adult cells, showed the development potential of embryonic stem cells," said Eggan. "We found they could be induced to mature into nerve cells, hair follicles, muscle cells and gut endoderm cells. And, since these cell types are derived from three different parts of the embryo, this really demonstrated the ability of these cells to give rise to a variety of different cell types."

Furthermore, Eggan noted that genetic analyses of the fused cells revealed that the somatic cell genes characteristic of adult cells had all been switched off, while those characteristic of embryonic cells had been switched on. "With the exception of a few genes one way or the other -- which is perhaps because these cells are now tetraploid -- the hybrid cells are indistinguishable from human embryonic stem cells," he said.

"The long term goal for this experiment was to do cell fusion in a way that would allow the elimination of the embryonic stem cell nucleus to create an embryonic stem cell from the somatic cell," said Melton. "This paper reports only the first step toward that goal, because we end up with a tetraploid cell. So, while this does not obviate the need for human oocytes, it demonstrates that this general approach of cell fusion is an interesting one that should be further explored."

The researchers also performed fusion experiments using pelvic bone cells as the somatic cells and a different human embryonic cell line, to demonstrate that their technique was not restricted to one adult cell type or embryonic cell line.

In both cases, the researchers observed extensive reprogramming of the somatic cells. "We were surprised at how complete the reprogramming was," said Eggan. "I think we were expecting that there would be more ’memory’ of the adult state than the embryonic in the hybrid cells. It was quite clear that when we looked at these hybrid cells, they had completely reverted to an embryonic state."

Melton said that the remaining technical hurdle is figuring out a way to eliminate the embryonic stem cell nucleus in the hybrid cell, causing it to have a normal number of chromosomes. One problem, said Melton, is that the nucleus in stem cells is large, occupying nearly the entire cell. Thus, it is not practical to physically extract the nucleus, as is currently done with oocytes, which have a relatively small nucleus. An alternative approach of destroying the embryonic stem cell nucleus with chemicals or radiation would induce the cell’s suicide program, called apoptosis, he said.

Melton emphasized that "at this at this stage in our understanding, the hard fact is that the only way to create an embryonic stem cell from a somatic cell is by nuclear transfer into oocytes. Taking advantage of this current capability -- such as colleagues in South Korea and other countries are doing -- is critical if we are to maintain the progress necessary to realize the extraordinary clinical potential of this technology."

Eggan added that the most realistic current promise of the fusion technique is in studying the machinery of genetic reprogramming of somatic cells by embryonic cells. "It is extremely difficult to study the reprogramming process using eggs, because in the case of humans it is very difficult to obtain eggs in any quantity and difficult or impossible to genetically manipulate them," he said. "But embryonic stem cells can be grown in large quantities. We can isolate the components of the reprogramming machinery, and we can genetically manipulate the cells to analyze the reprogramming process."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>