Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hide and seek: Researchers discover a new way for infectious bacteria to enter cells

23.08.2005


French scientists have learned how Listeria monocytogenes, which causes a major food-borne illness, commandeers cellular transport machinery to invade cells and hide from the body’s immune system. They believe that other infectious organisms may use the same mechanism.

The Listeria bacterium, found in soil and water, can be transmitted to humans via undercooked and unpasteurized food, causing flu-like symptoms or gastrointestinal distress. For individuals with weakened immune systems, listeriosis can be fatal, and infections during pregnancy can lead to miscarriage, stillbirth, premature delivery, or infection of the newborn.

The research was conducted by Pascale Cossart, a Howard Hughes Medical Institute international research scholar, and her colleague Esteban Veiga at the Institut Pasteur in Paris, and will be published in the August 21, 2005, issue of Nature Cell Biology. Cossart and Veiga detailed how Listeria invades cells by activating cellular machinery that transports viruses, small molecules, and proteins. Once it has safely entered a cell, the microbe can replicate and continue the process of infection.



The body usually deals with bacteria and other large, foreign microbes through a process called phagocytosis. Specialized cells engulf the invading microbe and destroy it. Scientists long believed that cells use a second process, called endocytosis, to deal with smaller molecules or viruses. In endocytsosis, a cell’s outer membrane pinches inward around the target to form a pocket that’s brought inside the cell, creating a structure called a vesicle.

"Phagocytosis and endocytosis may, in fact, be more similar than past research suggests. This is a totally new concept," Cossart says.

Cossart’s lab had observed that Listeria – which is 20 times the size of the largest particle scientists believed a cell could take in by endocytosis – could invade non-phagocytic cells. Other labs had made similar observations with other bacteria. Cossart and Veiga investigated the underlying machinery behind this uncommon invasion strategy, which they knew depended on an interaction between a protein on the surface of the bacteria, known as InlB, and a protein called Met on the surface of the cell it was invading.

They discovered that when InlB interacts with Met, the cell responds by adding a chemical tag to Met that flags it for protein recycling or degradation. Since Met is on the outside surface of the cell and the recycling and degradation machineries are inside, the cell must bring Met inside through endocytosis in order to dispose of it. As the cell creates the vesicle that will transport tagged Met, Listeria stows away and invades the cell.

By manipulating the gene expression of the cells Listeria was invading, the researchers showed that specific molecules known to be involved in endocytosis were essential for successful invasion by Listeria. Similarly, they found that an enzyme that tags proteins for recycling was also required.

Listeria’s use of receptor-mediated endocytosis to infect hosts, according to Cossart, suggests that other bacteria may exploit the same mechanism to gain entry into non-phagocytic cells. "This mechanism of cell entry may be used by several different kinds of bacteria, which is a major deviation from the belief that endocytosis is strictly for importing small molecules into cells," she says.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>