Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hide and seek: Researchers discover a new way for infectious bacteria to enter cells

23.08.2005


French scientists have learned how Listeria monocytogenes, which causes a major food-borne illness, commandeers cellular transport machinery to invade cells and hide from the body’s immune system. They believe that other infectious organisms may use the same mechanism.

The Listeria bacterium, found in soil and water, can be transmitted to humans via undercooked and unpasteurized food, causing flu-like symptoms or gastrointestinal distress. For individuals with weakened immune systems, listeriosis can be fatal, and infections during pregnancy can lead to miscarriage, stillbirth, premature delivery, or infection of the newborn.

The research was conducted by Pascale Cossart, a Howard Hughes Medical Institute international research scholar, and her colleague Esteban Veiga at the Institut Pasteur in Paris, and will be published in the August 21, 2005, issue of Nature Cell Biology. Cossart and Veiga detailed how Listeria invades cells by activating cellular machinery that transports viruses, small molecules, and proteins. Once it has safely entered a cell, the microbe can replicate and continue the process of infection.



The body usually deals with bacteria and other large, foreign microbes through a process called phagocytosis. Specialized cells engulf the invading microbe and destroy it. Scientists long believed that cells use a second process, called endocytosis, to deal with smaller molecules or viruses. In endocytsosis, a cell’s outer membrane pinches inward around the target to form a pocket that’s brought inside the cell, creating a structure called a vesicle.

"Phagocytosis and endocytosis may, in fact, be more similar than past research suggests. This is a totally new concept," Cossart says.

Cossart’s lab had observed that Listeria – which is 20 times the size of the largest particle scientists believed a cell could take in by endocytosis – could invade non-phagocytic cells. Other labs had made similar observations with other bacteria. Cossart and Veiga investigated the underlying machinery behind this uncommon invasion strategy, which they knew depended on an interaction between a protein on the surface of the bacteria, known as InlB, and a protein called Met on the surface of the cell it was invading.

They discovered that when InlB interacts with Met, the cell responds by adding a chemical tag to Met that flags it for protein recycling or degradation. Since Met is on the outside surface of the cell and the recycling and degradation machineries are inside, the cell must bring Met inside through endocytosis in order to dispose of it. As the cell creates the vesicle that will transport tagged Met, Listeria stows away and invades the cell.

By manipulating the gene expression of the cells Listeria was invading, the researchers showed that specific molecules known to be involved in endocytosis were essential for successful invasion by Listeria. Similarly, they found that an enzyme that tags proteins for recycling was also required.

Listeria’s use of receptor-mediated endocytosis to infect hosts, according to Cossart, suggests that other bacteria may exploit the same mechanism to gain entry into non-phagocytic cells. "This mechanism of cell entry may be used by several different kinds of bacteria, which is a major deviation from the belief that endocytosis is strictly for importing small molecules into cells," she says.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>