Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hide and seek: Researchers discover a new way for infectious bacteria to enter cells

23.08.2005


French scientists have learned how Listeria monocytogenes, which causes a major food-borne illness, commandeers cellular transport machinery to invade cells and hide from the body’s immune system. They believe that other infectious organisms may use the same mechanism.

The Listeria bacterium, found in soil and water, can be transmitted to humans via undercooked and unpasteurized food, causing flu-like symptoms or gastrointestinal distress. For individuals with weakened immune systems, listeriosis can be fatal, and infections during pregnancy can lead to miscarriage, stillbirth, premature delivery, or infection of the newborn.

The research was conducted by Pascale Cossart, a Howard Hughes Medical Institute international research scholar, and her colleague Esteban Veiga at the Institut Pasteur in Paris, and will be published in the August 21, 2005, issue of Nature Cell Biology. Cossart and Veiga detailed how Listeria invades cells by activating cellular machinery that transports viruses, small molecules, and proteins. Once it has safely entered a cell, the microbe can replicate and continue the process of infection.



The body usually deals with bacteria and other large, foreign microbes through a process called phagocytosis. Specialized cells engulf the invading microbe and destroy it. Scientists long believed that cells use a second process, called endocytosis, to deal with smaller molecules or viruses. In endocytsosis, a cell’s outer membrane pinches inward around the target to form a pocket that’s brought inside the cell, creating a structure called a vesicle.

"Phagocytosis and endocytosis may, in fact, be more similar than past research suggests. This is a totally new concept," Cossart says.

Cossart’s lab had observed that Listeria – which is 20 times the size of the largest particle scientists believed a cell could take in by endocytosis – could invade non-phagocytic cells. Other labs had made similar observations with other bacteria. Cossart and Veiga investigated the underlying machinery behind this uncommon invasion strategy, which they knew depended on an interaction between a protein on the surface of the bacteria, known as InlB, and a protein called Met on the surface of the cell it was invading.

They discovered that when InlB interacts with Met, the cell responds by adding a chemical tag to Met that flags it for protein recycling or degradation. Since Met is on the outside surface of the cell and the recycling and degradation machineries are inside, the cell must bring Met inside through endocytosis in order to dispose of it. As the cell creates the vesicle that will transport tagged Met, Listeria stows away and invades the cell.

By manipulating the gene expression of the cells Listeria was invading, the researchers showed that specific molecules known to be involved in endocytosis were essential for successful invasion by Listeria. Similarly, they found that an enzyme that tags proteins for recycling was also required.

Listeria’s use of receptor-mediated endocytosis to infect hosts, according to Cossart, suggests that other bacteria may exploit the same mechanism to gain entry into non-phagocytic cells. "This mechanism of cell entry may be used by several different kinds of bacteria, which is a major deviation from the belief that endocytosis is strictly for importing small molecules into cells," she says.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>