Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on how chemical reactions work

22.08.2005


Research from The University of Nottingham’s School of Chemistry has contributed to a breakthrough in the complex world of understanding how the quantum mechanics of chemical reactions work.



By understanding chemical processes better chemists will be able to conduct experiments more quickly and accurately, and make new chemicals more cheaply and efficiently.

A study led by Dr Stuart Althorpe, Reader in Physical Chemistry, is published in the August 19 issue of the prestigious international journal Science.


The research was carried out as part of a long-standing collaboration with a colleague at the University of Durham, Dr Eckart Wrede, and provides a leap forward for scientists all over the world.

Dr Althorpe said: “This work provides another vital piece of the jigsaw for understanding how chemical reactions work.

“Since the late 1920s chemists have been trying to gain a better understanding of all the different factors that occur during a chemical reaction particularly in terms of quantum mechanics — or put simply, how atoms and molecules behave during a chemical reaction. Our research takes us an important step closer to fully understanding these chemical processes in the greatest possible detail.”

Dr Wrede added: “This research will be helpful to solve reactions which can cause pollution in combustion processes or in the atmosphere.

“It can help to narrow down which reactions are the most polluting and should be examined more urgently to find ways to reduce their effects.”

The Nottingham group used a sophisticated supercomputer, the £5m High Performance Computing (HPC) facility, to calculate the quantum behaviour of the atoms and molecules throughout a chemical reaction. The HPC, which had its official launch at the University Park campus earlier this year, is one of the world’s most powerful supercomputers and can perform three million million calculations per second.

The Durham group then created a ‘billiard ball movie’ which allowed them to watch the motion of the atoms and molecules and learn more about how they reacted with each other. They found that only in certain situations did the movement of atoms and molecules speed up or slow down a chemical reaction.

Professor David Clary, of Oxford University, has written a Science Perspectives article on the research in the same issue of Science. He said: "The clever paper by Dr Althorpe and co-workers is a novel and definitive theoretical study on the simplest chemical reaction of hydrogen atoms with hydrogen molecules."

Dr Stuart Althorpe | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>