Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on how chemical reactions work

22.08.2005


Research from The University of Nottingham’s School of Chemistry has contributed to a breakthrough in the complex world of understanding how the quantum mechanics of chemical reactions work.



By understanding chemical processes better chemists will be able to conduct experiments more quickly and accurately, and make new chemicals more cheaply and efficiently.

A study led by Dr Stuart Althorpe, Reader in Physical Chemistry, is published in the August 19 issue of the prestigious international journal Science.


The research was carried out as part of a long-standing collaboration with a colleague at the University of Durham, Dr Eckart Wrede, and provides a leap forward for scientists all over the world.

Dr Althorpe said: “This work provides another vital piece of the jigsaw for understanding how chemical reactions work.

“Since the late 1920s chemists have been trying to gain a better understanding of all the different factors that occur during a chemical reaction particularly in terms of quantum mechanics — or put simply, how atoms and molecules behave during a chemical reaction. Our research takes us an important step closer to fully understanding these chemical processes in the greatest possible detail.”

Dr Wrede added: “This research will be helpful to solve reactions which can cause pollution in combustion processes or in the atmosphere.

“It can help to narrow down which reactions are the most polluting and should be examined more urgently to find ways to reduce their effects.”

The Nottingham group used a sophisticated supercomputer, the £5m High Performance Computing (HPC) facility, to calculate the quantum behaviour of the atoms and molecules throughout a chemical reaction. The HPC, which had its official launch at the University Park campus earlier this year, is one of the world’s most powerful supercomputers and can perform three million million calculations per second.

The Durham group then created a ‘billiard ball movie’ which allowed them to watch the motion of the atoms and molecules and learn more about how they reacted with each other. They found that only in certain situations did the movement of atoms and molecules speed up or slow down a chemical reaction.

Professor David Clary, of Oxford University, has written a Science Perspectives article on the research in the same issue of Science. He said: "The clever paper by Dr Althorpe and co-workers is a novel and definitive theoretical study on the simplest chemical reaction of hydrogen atoms with hydrogen molecules."

Dr Stuart Althorpe | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>