Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy management in cells may hold key to cancer defense

19.08.2005


In an ongoing effort to fight disease by manipulating energy regulation of cells, a collaborative study led by Dartmouth Medical School (DMS) has demonstrated that cells lacking a tumor-suppressing kinase called LKB1 can still maintain healthy energy levels when they become stressed. This energy regulation is essential for keeping cells from dying off too quickly. The study’s results could signal new advances for combating cancerous tumor growth, but also type 2 diabetes and obesity.



The study, published in the August 12 issue of the Journal of Biological Chemistry (JBC), was headed by Dr. Lee Witters, Eugene W. Leonard 1921 Professor of Medicine and Biochemistry at DMS and of Biological Sciences at Dartmouth College, who has researched kinases for over 25 years. Kinases encompass a large family of enzyme proteins that play key roles in the workings of most animal cells. He has focused much of his research on the AMP-activated kinase (AMPK) which responsible for managing energy within cellular pathways.

"A cell’s energy level is critical to its survival," explains Witters, who likens a low-energy cell to a car with no gas in its tank. "In a previous study, we found that the cellular "gas gauge," AMPK, can turn around and alter any deficits in the cell if it is turned on by the kinase LKB1. In this JBC study, we wanted to see if AMPK could also be turned on by something besides LKB1."


"We decided to work with cervical and lung cancer cells because LKB1 is absent from the cellular pathway," said Rebecca Hurley, lead author of the study and a graduate student in the Molecular and Cellular Biology Program at Dartmouth. Working closely with scientists at St. Vincent’s Institute in Australia and Duke University, the DMS team concluded that two kinases in these cancer cells, CaMKKá and CaMKKâ, are able to regulate AMPK independent of LBK1.

"With the addition of these two kinases, we think we have all nearly the players responsible for energy regulation within the cell, which should offer new opportunities in cancer treatment," said Hurley. "If we can stifle a cancer cell’s ability to adapt to an energy deficit, it might lose its growth advantage." "You need to know how all these proteins interact before you can make truly significant advances," echoes Witters "It’s like poker; not only do you need to know what each card signifies individually, but you must have an understanding of how they play off each other in order to win."

In addition to cancer-fighting potential of AMPK regulation, the enzyme also responds to changes in insulin or glucose and mediates impaired energy metabolism, a hallmark of type 2 diabetes. "This indicates that AMPK is a very tempting target for the treatment of some forms of diabetes and even obesity," said Witters.

As Witters’ laboratory continues to zero in on the central role of kinases in the treatment of disease, he acknowledges that this research is becoming more complex and multiple approaches are needed to find solutions. Witters believes that significant breakthroughs in science can only be achieved through open collaboration, citing partnerships between faculty and students, and between other institutes outside the Dartmouth community.

Often referring to his laboratory as a classroom, Witters pointed out the integral roles played by Hurley and Dartmouth College undergraduate student Jeanne Franzone ’05, a co-author of the study. "Students are the grand integrators of collaboration," he said, noting that Hurley traveled to other labs in the US to complete this study. Other co-authors of the study are Kristin Anderson and Anthony Means from Duke University and Bruce Kemp from The St. Vincent’s Institute and CSIRO Health Sciences and Nutrition in Australia.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>