Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists link genetic pathway to development of hearing

19.08.2005


Scientists are one step closer to understanding the genetic pathway involved in the development of hearing. New research findings, published online this week in the journal Nature Genetics, detail how sensory hair cells in the ear –– the cells largely responsible for hearing –– develop unique shapes that enable the perception of sound.



Located in the spiraled cochlea, the hearing portion of the inner ear, the hair cells transform the mechanical vibrations that enter the ear in the form of sound waves into chemical signals, which they then direct to the brain. Ping Chen, PhD, assistant professor of cell biology at Emory University School of Medicine, and her colleagues found that the development of cochlea and hair cells is dependent on a genetic pathway called the PCP (planar cell polarity) pathway.

Although some species, including birds, are capable of re-growing hair cells, mammals lack the ability to naturally regenerate hair cells. Thus individuals born with improperly developed hair cells, or those who lose them through trauma, disease, environmental factors or aging, cannot regain their hearing. Reports from the National Institutes of Health (NIH) indicate that severe hearing impairment affects 28 million Americans. That number includes the approximately 4,000 Americans each year who suffer from sudden deafness, and the roughly 12,000 children born each year with difficulty hearing.


Scientists have been optimistic that by discovering the genes involved in development of the ear they could learn the molecular and genetic basis for some forms of deafness and offer promises for future efforts in hearing restoration. For the past two decades they have understood that the unique asymmetrical shape of hair cells was an essential part of their proper function. However, it was not clear which genes were involved in the development of this polarized shape within the cochlea. By using mouse models, Dr. Chen and her research team discovered that the PCP pathway is involved in shaping the cochlea and the sensory hair cells. Mutations within this genetic pathway impact the shape of the cochlea and the polarity of the sensory hair cells that are essential for hearing.

"This basic molecular pathway is involved in regulating many other aspects of embryonic development in addition to the formation of the polarized structure of the auditory sensory organ," says Dr. Chen. "Finding out which processes are involved in the formation of these polarized cells is an essential, fundamental issue for both developmental and cell biologists."

Other authors of the study included Jianbo Wang and Anthony Wynshaw-Boris from the University of California San Diego School of Medicine, Sharayne Mark, Xiaohui Zhang, Dong Qian, Seung-Jong Yoo, Kristen Radde-Gallwitz, Yanping Zhang, Xi Lin from Emory University School of Medicine, and Andres Collazo from House Ear Institute.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>