Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists link genetic pathway to development of hearing


Scientists are one step closer to understanding the genetic pathway involved in the development of hearing. New research findings, published online this week in the journal Nature Genetics, detail how sensory hair cells in the ear –– the cells largely responsible for hearing –– develop unique shapes that enable the perception of sound.

Located in the spiraled cochlea, the hearing portion of the inner ear, the hair cells transform the mechanical vibrations that enter the ear in the form of sound waves into chemical signals, which they then direct to the brain. Ping Chen, PhD, assistant professor of cell biology at Emory University School of Medicine, and her colleagues found that the development of cochlea and hair cells is dependent on a genetic pathway called the PCP (planar cell polarity) pathway.

Although some species, including birds, are capable of re-growing hair cells, mammals lack the ability to naturally regenerate hair cells. Thus individuals born with improperly developed hair cells, or those who lose them through trauma, disease, environmental factors or aging, cannot regain their hearing. Reports from the National Institutes of Health (NIH) indicate that severe hearing impairment affects 28 million Americans. That number includes the approximately 4,000 Americans each year who suffer from sudden deafness, and the roughly 12,000 children born each year with difficulty hearing.

Scientists have been optimistic that by discovering the genes involved in development of the ear they could learn the molecular and genetic basis for some forms of deafness and offer promises for future efforts in hearing restoration. For the past two decades they have understood that the unique asymmetrical shape of hair cells was an essential part of their proper function. However, it was not clear which genes were involved in the development of this polarized shape within the cochlea. By using mouse models, Dr. Chen and her research team discovered that the PCP pathway is involved in shaping the cochlea and the sensory hair cells. Mutations within this genetic pathway impact the shape of the cochlea and the polarity of the sensory hair cells that are essential for hearing.

"This basic molecular pathway is involved in regulating many other aspects of embryonic development in addition to the formation of the polarized structure of the auditory sensory organ," says Dr. Chen. "Finding out which processes are involved in the formation of these polarized cells is an essential, fundamental issue for both developmental and cell biologists."

Other authors of the study included Jianbo Wang and Anthony Wynshaw-Boris from the University of California San Diego School of Medicine, Sharayne Mark, Xiaohui Zhang, Dong Qian, Seung-Jong Yoo, Kristen Radde-Gallwitz, Yanping Zhang, Xi Lin from Emory University School of Medicine, and Andres Collazo from House Ear Institute.

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>