Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals a way disease bacteria sense antimicrobials and initiate a counter-defense

19.08.2005


Many living things, from fruit flies to people, naturally produce disease-fighting chemicals, called antimicrobial peptides, to kill harmful bacteria. In a counter move, some disease-causing bacteria have evolved microbial detectors. The bacteria sense the presence of antimicrobial peptides as a warning signal. The alarm sets off a reaction inside the bacteria to avoid destruction.



University of Washington (UW) and McGill researchers have revealed a molecular mechanism whereby bacteria can recognize tiny antimicrobial peptide molecules, then respond by becoming more virulent. Their studies were done on the bacterium Salmonella typhimurium. The findings were published in the Aug. 12 edition of the journal Cell.

Salmonella typhimurium can contaminate meats such as beef, pork, and chicken, as well as cereals and other foods, and cause severe intestinal illness. Certain strains of the bacteria are difficult to treat, and are behind the increase of salmonellosis in people. Some food science institutes anticipate that virulent strains of salmonella will become more common throughout the food chain. Learning how this sometimes deadly organism fights back against the immune system may lead to treatments that get around bacterial resistance.


Work in this area may also suggest ways other disease-causing Gram-negative bacteria maintain a stronghold in the midst of the body’s attempts to get rid of them.

Strangely enough, the same molecules that the body sends out to help destroy salmonella inadvertently launch bacterial defenses. It is as if missles armed, rather than demolished, the target. The body’s antimicrobial peptides bind to an enzyme, PhoQ, which acts as a watchtower and interceptor near the surface of bacterial cell membranes. The peptide binding activates PhoQ, which sets off a cascade of signals. The signals turn on a large set of bacterial genes. Some of the genes are responsible for products that fortify the bacterial cell surface and protect the bacteria from being killed.

The research was done in the UW laboratory of Dr. Samuel Miller, professor of microbiology and of medicine, Division of Infectious Diseases. The MIller Lab explores the molecular aspects of bacteria-induced illness, and how disease-causing bacteria interact with cells in the host they have infected, and adapt to environments inside the body, such as the airway.

The lead author of the Aug.12 Cell article was Dr. Martin Bader, a UW senior fellow in microbiology and genome sciences. The research team, under the direction of Miller, included Dr. Sarah Sanowar of the Department of Microbiology and Immunology at McGill University; Dr. Margaret Daley, a UW senior fellow in biochemistry; Anna SChneider, a UW undergraduate majoring in mathematics and biochemistry; Uhn Soo Cho, a graduate studenty in biological structure; Dr. Wenqing Xu, assistant professor of biological structure; Dr. Rachel Klevit, professor of biochemistry; and Dr. Herve Le Moual on the McGill Faculty of Dentistry.

Grants from the National Institute of Allergy and Infectious Diseases and from the Canadian Institutes of Health Research funded the study.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>