Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals a way disease bacteria sense antimicrobials and initiate a counter-defense

19.08.2005


Many living things, from fruit flies to people, naturally produce disease-fighting chemicals, called antimicrobial peptides, to kill harmful bacteria. In a counter move, some disease-causing bacteria have evolved microbial detectors. The bacteria sense the presence of antimicrobial peptides as a warning signal. The alarm sets off a reaction inside the bacteria to avoid destruction.



University of Washington (UW) and McGill researchers have revealed a molecular mechanism whereby bacteria can recognize tiny antimicrobial peptide molecules, then respond by becoming more virulent. Their studies were done on the bacterium Salmonella typhimurium. The findings were published in the Aug. 12 edition of the journal Cell.

Salmonella typhimurium can contaminate meats such as beef, pork, and chicken, as well as cereals and other foods, and cause severe intestinal illness. Certain strains of the bacteria are difficult to treat, and are behind the increase of salmonellosis in people. Some food science institutes anticipate that virulent strains of salmonella will become more common throughout the food chain. Learning how this sometimes deadly organism fights back against the immune system may lead to treatments that get around bacterial resistance.


Work in this area may also suggest ways other disease-causing Gram-negative bacteria maintain a stronghold in the midst of the body’s attempts to get rid of them.

Strangely enough, the same molecules that the body sends out to help destroy salmonella inadvertently launch bacterial defenses. It is as if missles armed, rather than demolished, the target. The body’s antimicrobial peptides bind to an enzyme, PhoQ, which acts as a watchtower and interceptor near the surface of bacterial cell membranes. The peptide binding activates PhoQ, which sets off a cascade of signals. The signals turn on a large set of bacterial genes. Some of the genes are responsible for products that fortify the bacterial cell surface and protect the bacteria from being killed.

The research was done in the UW laboratory of Dr. Samuel Miller, professor of microbiology and of medicine, Division of Infectious Diseases. The MIller Lab explores the molecular aspects of bacteria-induced illness, and how disease-causing bacteria interact with cells in the host they have infected, and adapt to environments inside the body, such as the airway.

The lead author of the Aug.12 Cell article was Dr. Martin Bader, a UW senior fellow in microbiology and genome sciences. The research team, under the direction of Miller, included Dr. Sarah Sanowar of the Department of Microbiology and Immunology at McGill University; Dr. Margaret Daley, a UW senior fellow in biochemistry; Anna SChneider, a UW undergraduate majoring in mathematics and biochemistry; Uhn Soo Cho, a graduate studenty in biological structure; Dr. Wenqing Xu, assistant professor of biological structure; Dr. Rachel Klevit, professor of biochemistry; and Dr. Herve Le Moual on the McGill Faculty of Dentistry.

Grants from the National Institute of Allergy and Infectious Diseases and from the Canadian Institutes of Health Research funded the study.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>