Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals a way disease bacteria sense antimicrobials and initiate a counter-defense

19.08.2005


Many living things, from fruit flies to people, naturally produce disease-fighting chemicals, called antimicrobial peptides, to kill harmful bacteria. In a counter move, some disease-causing bacteria have evolved microbial detectors. The bacteria sense the presence of antimicrobial peptides as a warning signal. The alarm sets off a reaction inside the bacteria to avoid destruction.



University of Washington (UW) and McGill researchers have revealed a molecular mechanism whereby bacteria can recognize tiny antimicrobial peptide molecules, then respond by becoming more virulent. Their studies were done on the bacterium Salmonella typhimurium. The findings were published in the Aug. 12 edition of the journal Cell.

Salmonella typhimurium can contaminate meats such as beef, pork, and chicken, as well as cereals and other foods, and cause severe intestinal illness. Certain strains of the bacteria are difficult to treat, and are behind the increase of salmonellosis in people. Some food science institutes anticipate that virulent strains of salmonella will become more common throughout the food chain. Learning how this sometimes deadly organism fights back against the immune system may lead to treatments that get around bacterial resistance.


Work in this area may also suggest ways other disease-causing Gram-negative bacteria maintain a stronghold in the midst of the body’s attempts to get rid of them.

Strangely enough, the same molecules that the body sends out to help destroy salmonella inadvertently launch bacterial defenses. It is as if missles armed, rather than demolished, the target. The body’s antimicrobial peptides bind to an enzyme, PhoQ, which acts as a watchtower and interceptor near the surface of bacterial cell membranes. The peptide binding activates PhoQ, which sets off a cascade of signals. The signals turn on a large set of bacterial genes. Some of the genes are responsible for products that fortify the bacterial cell surface and protect the bacteria from being killed.

The research was done in the UW laboratory of Dr. Samuel Miller, professor of microbiology and of medicine, Division of Infectious Diseases. The MIller Lab explores the molecular aspects of bacteria-induced illness, and how disease-causing bacteria interact with cells in the host they have infected, and adapt to environments inside the body, such as the airway.

The lead author of the Aug.12 Cell article was Dr. Martin Bader, a UW senior fellow in microbiology and genome sciences. The research team, under the direction of Miller, included Dr. Sarah Sanowar of the Department of Microbiology and Immunology at McGill University; Dr. Margaret Daley, a UW senior fellow in biochemistry; Anna SChneider, a UW undergraduate majoring in mathematics and biochemistry; Uhn Soo Cho, a graduate studenty in biological structure; Dr. Wenqing Xu, assistant professor of biological structure; Dr. Rachel Klevit, professor of biochemistry; and Dr. Herve Le Moual on the McGill Faculty of Dentistry.

Grants from the National Institute of Allergy and Infectious Diseases and from the Canadian Institutes of Health Research funded the study.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>