Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study reveals a way disease bacteria sense antimicrobials and initiate a counter-defense


Many living things, from fruit flies to people, naturally produce disease-fighting chemicals, called antimicrobial peptides, to kill harmful bacteria. In a counter move, some disease-causing bacteria have evolved microbial detectors. The bacteria sense the presence of antimicrobial peptides as a warning signal. The alarm sets off a reaction inside the bacteria to avoid destruction.

University of Washington (UW) and McGill researchers have revealed a molecular mechanism whereby bacteria can recognize tiny antimicrobial peptide molecules, then respond by becoming more virulent. Their studies were done on the bacterium Salmonella typhimurium. The findings were published in the Aug. 12 edition of the journal Cell.

Salmonella typhimurium can contaminate meats such as beef, pork, and chicken, as well as cereals and other foods, and cause severe intestinal illness. Certain strains of the bacteria are difficult to treat, and are behind the increase of salmonellosis in people. Some food science institutes anticipate that virulent strains of salmonella will become more common throughout the food chain. Learning how this sometimes deadly organism fights back against the immune system may lead to treatments that get around bacterial resistance.

Work in this area may also suggest ways other disease-causing Gram-negative bacteria maintain a stronghold in the midst of the body’s attempts to get rid of them.

Strangely enough, the same molecules that the body sends out to help destroy salmonella inadvertently launch bacterial defenses. It is as if missles armed, rather than demolished, the target. The body’s antimicrobial peptides bind to an enzyme, PhoQ, which acts as a watchtower and interceptor near the surface of bacterial cell membranes. The peptide binding activates PhoQ, which sets off a cascade of signals. The signals turn on a large set of bacterial genes. Some of the genes are responsible for products that fortify the bacterial cell surface and protect the bacteria from being killed.

The research was done in the UW laboratory of Dr. Samuel Miller, professor of microbiology and of medicine, Division of Infectious Diseases. The MIller Lab explores the molecular aspects of bacteria-induced illness, and how disease-causing bacteria interact with cells in the host they have infected, and adapt to environments inside the body, such as the airway.

The lead author of the Aug.12 Cell article was Dr. Martin Bader, a UW senior fellow in microbiology and genome sciences. The research team, under the direction of Miller, included Dr. Sarah Sanowar of the Department of Microbiology and Immunology at McGill University; Dr. Margaret Daley, a UW senior fellow in biochemistry; Anna SChneider, a UW undergraduate majoring in mathematics and biochemistry; Uhn Soo Cho, a graduate studenty in biological structure; Dr. Wenqing Xu, assistant professor of biological structure; Dr. Rachel Klevit, professor of biochemistry; and Dr. Herve Le Moual on the McGill Faculty of Dentistry.

Grants from the National Institute of Allergy and Infectious Diseases and from the Canadian Institutes of Health Research funded the study.

Leila Gray | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>