Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One bacteria stops another on contact

19.08.2005


Findings have implications for urinary tract infections



Scientists have discovered a new phenomenon in which one bacterial cell can stop the growth of another on physical contact. The bacteria that stop growing may go into a dormant state, rather than dying. The findings have implications for management of chronic diseases, such as urinary tract infections.

The discovery by a team of scientists working in the laboratory of David Low, professor of biology at the University of California, Santa Barbara, is reported in the August 19 issue of the journal Science. The findings indicate that Escherichia coli, one culprit in urinary tract infections, contains genes that when turned on block the growth of other E. coli bacteria that they touch. The finding was a complete surprise to the scientists, said Low.


The discovery may eventually lead to new antimicrobial agents to halt bacterial growth which would be an entirely new system to shut bacteria down, according to the scientists. "This has potential implications for new antibiotics," said Low. "If bacteria can do this, then maybe we can do it."

Doctoral student and first author Stephanie Aoki, and a team of scientists working in the Low lab, made the discovery while studying other aspects of E. coli. After working for two years, the team identified two genes required for this "stop on contact" phenomenon.

"We don’t know if these ’stopped’ cells are dead or alive," said Low. "They don’t grow after they’ve been touched. They don’t grow on plates, but laboratory stains show they may be alive. You might call them dead, but they don’t break apart the way dead cells do. These cells appear to stay intact, perhaps in a quiescent mode, or dormant state."

Aoki explained, "We are currently exploring how contact between bacteria can inhibit cell growth –– and determining what this contact-dependent inhibition of growth (CDI) system is used for. These genes are present in E. coli, including uropathogenic E. coli that cause urinary tract infections, and similar genes may be present in other pathogens such as the plague bacillus, Yersinia pestis."

Low said that one possible interpretation is that bacteria use this system to eliminate competition in the environments they grow in. "Another possibility is that the bacteria use the CDI system to shut themselves off inside a host, going into a dormant state where they may go undetected by the immune system," he said.

Thousands of women in this country have chronic urinary tract infections, noted the scientists. The disease seems to go away for awhile, then something triggers recurrence of the disease.

Work by Scott Hultrgen at Washington University has indicated that E. coli cells may hide in the walls of the bladder and urinary tract in a dormant state, explained Low. It is possible that the newly discovered CDI system contributes to this process.

"By studying the CDI system, we hope to understand more about how bacteria interact with each other and with their hosts, and how these interactions contribute to disease," said Aoki.

The findings may have repercussions outside of better understanding of urinary tract infections. Other diseases may have similar mechanisms, according to the scientists. "This research is in its infancy, but opens the door for exploration of the roles of contact-dependent growth inhibition in urinary tract infections and possibly other diseases," said Low.

"Aoki has discovered an entirely new phenomenon," explained Low, who has studied E. coli for over 20 years. "It is fascinating that bacteria have developed a system by which one cell can contact another and inhibit its growth."

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>