Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR chemists prepare molecules that accelerate chemical reactions for manufacturing drugs

18.08.2005


New molecules help make stable catalysts that work at room temperature



Chemists at the University of California, Riverside have synthesized a new class of carbenes – molecules that have unusual carbon atoms – that is expected to have wide applications in the pharmaceutical industry, ultimately resulting in a reduction in the price of drugs.

Called cyclic alkyl amino carbenes or CAACs, the molecules attach themselves to metals, such as palladium, to form highly efficient catalysts that allow chemical transformations otherwise considered impossible. The carbenes modulate the properties of the metals to which they are bound and can facilitate and speed up reactions involving their use.


Study results appear in the Angewandte Chemie International Edition, and were published online Aug. 1.

A carbene is a molecule that has a carbon atom with six electrons instead of the usual eight. Because of the electron deficiency, carbenes are highly reactive and usually unstable in nature.

In their paper, the UCR chemists discuss a set of chemical reactions involving the use of catalysts other than those that are CAAC-based. The authors note that these catalysts need strong heating to be effective. They add that the CAAC-based catalysts, on the other hand, can be used not only at room temperature but also in smaller amounts than is necessary for the other catalysts.

"For more than a century, most catalysts were prepared using chemical compounds called phosphines," said Guy Bertrand, the lead author of the study and Distinguished Professor of chemistry. "But in the 1990s, carbenes were found to be useful to make catalysts. The new carbenes we have prepared in the laboratory are such that they protect the metals to which they bind, making the metal catalysts more stable and longer lasting."

Because nitrogen atoms stabilize a carbene when they are adjacent to it, chemists believed until now that two nitrogen atoms were necessary in a carbene to make efficient catalysts. But having two nitrogen atoms also imposes structural limitations at the center of the carbene.

The carbenes synthesized by the UCR chemists has only one nitrogen atom, which lends the molecule a far more flexible structure. In effect, the carbenes are bigger at the metallic center of the catalyst, a feature that improves the efficiency of the catalyst.

"We started this project nearly two years ago," said Vincent Lavallo, an undergraduate researcher in Bertrand’s laboratory and the first author of the paper. "The carbene-based catalysts we report can simplify complex chemical preparations. Further, just mild temperatures are needed for the catalyst to be effective. Because of the catalyst’s longevity, you need only a small amount to achieve your final product. All of this can dramatically reduce the cost of manufacturing drugs, given that pharmaceutical companies are increasingly using carbene-supported catalysts for their chemical reactions."

Bertrand’s research group plans to continue to modify the new carbenes to find more efficient catalysts. "We’re looking also for new catalytic reactions facilitated by these new carbene metal complexes," Lavallo said. "The CAACs have made the field of carbene chemistry more exciting than ever."

Yves Canac, Carsten Präsang and Bruno Donnadieu of UCR assisted with the study. The National Institutes of Health and the chemicals manufacturer Rhodia provided support.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>