Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR chemists prepare molecules that accelerate chemical reactions for manufacturing drugs

18.08.2005


New molecules help make stable catalysts that work at room temperature



Chemists at the University of California, Riverside have synthesized a new class of carbenes – molecules that have unusual carbon atoms – that is expected to have wide applications in the pharmaceutical industry, ultimately resulting in a reduction in the price of drugs.

Called cyclic alkyl amino carbenes or CAACs, the molecules attach themselves to metals, such as palladium, to form highly efficient catalysts that allow chemical transformations otherwise considered impossible. The carbenes modulate the properties of the metals to which they are bound and can facilitate and speed up reactions involving their use.


Study results appear in the Angewandte Chemie International Edition, and were published online Aug. 1.

A carbene is a molecule that has a carbon atom with six electrons instead of the usual eight. Because of the electron deficiency, carbenes are highly reactive and usually unstable in nature.

In their paper, the UCR chemists discuss a set of chemical reactions involving the use of catalysts other than those that are CAAC-based. The authors note that these catalysts need strong heating to be effective. They add that the CAAC-based catalysts, on the other hand, can be used not only at room temperature but also in smaller amounts than is necessary for the other catalysts.

"For more than a century, most catalysts were prepared using chemical compounds called phosphines," said Guy Bertrand, the lead author of the study and Distinguished Professor of chemistry. "But in the 1990s, carbenes were found to be useful to make catalysts. The new carbenes we have prepared in the laboratory are such that they protect the metals to which they bind, making the metal catalysts more stable and longer lasting."

Because nitrogen atoms stabilize a carbene when they are adjacent to it, chemists believed until now that two nitrogen atoms were necessary in a carbene to make efficient catalysts. But having two nitrogen atoms also imposes structural limitations at the center of the carbene.

The carbenes synthesized by the UCR chemists has only one nitrogen atom, which lends the molecule a far more flexible structure. In effect, the carbenes are bigger at the metallic center of the catalyst, a feature that improves the efficiency of the catalyst.

"We started this project nearly two years ago," said Vincent Lavallo, an undergraduate researcher in Bertrand’s laboratory and the first author of the paper. "The carbene-based catalysts we report can simplify complex chemical preparations. Further, just mild temperatures are needed for the catalyst to be effective. Because of the catalyst’s longevity, you need only a small amount to achieve your final product. All of this can dramatically reduce the cost of manufacturing drugs, given that pharmaceutical companies are increasingly using carbene-supported catalysts for their chemical reactions."

Bertrand’s research group plans to continue to modify the new carbenes to find more efficient catalysts. "We’re looking also for new catalytic reactions facilitated by these new carbene metal complexes," Lavallo said. "The CAACs have made the field of carbene chemistry more exciting than ever."

Yves Canac, Carsten Präsang and Bruno Donnadieu of UCR assisted with the study. The National Institutes of Health and the chemicals manufacturer Rhodia provided support.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>