Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Model Organism For Studying Viruses that Affect Humans

18.08.2005


Researchers at the University of California, Riverside have discovered that a simple worm, called C. elegans, makes an excellent experimental host for studying some of the most virulent viruses that infect humans.



The researchers published their findings in the Aug. 18 issue of the journal Nature in a paper titled, Animal virus replication and RNAi-mediated antiviral silencing in C. elegans.

UCR Professor of Plant Pathology Shou-Wei Ding co-authored the paper with Morris Maduro, assistant professor of biology; Feng Li, a graduate student in microbiology; Rui Lu and Hongwei Li, postdoctoral researchers in Ding’s laboratory; and research specialists Gina Broitman-Maduro and Wan-Xiang Li. Lu and Maduro are co-first authors of this Nature paper. The National Institutes of Health and the U.S. Department of Agriculture supported the research.


The paper reflects a major step forward in the study of how some of the world’s most virulent viruses, such as West Nile, SARS, Ebola and Hepatitis C interact with their hosts.

“All these viruses are very dangerous and are traditionally studied in animal models, so large-scale genetic studies of the host-virus interaction is very hard to do,” said Ding, who works in the Center for Plant Cell Biology at UCR’s Institute for Integrative Genome Biology. “Needless to say, we are all very excited to find that this little worm can be used to understand how hosts genetically control viruses.”

For years researchers throughout the world have studied C. elegans because many aspects of its biology, such as genetics, development and the workings of neurons, mirror the biology of humans. However, no viruses were known to infect the millimeter-long roundworm so it was not used as a model for studying viral infections.

The Nature paper now shows that UC Riverside researchers have developed a strain of the worm, C. elegans, in which an animal virus could replicate, allowing them to map the delicate dance of action and reaction between virus and host.

The UCR team has shown that virus replication in the worm triggers an antiviral response known as RNA silencing or RNA interference (RNAi). RNAi specifically breaks down the virus’ RNA. Virus RNA creates proteins that allow the virus to function. The virus responds by producing a protein acting as a suppressor of RNAi to shut down the host’s antiviral response. Virus infection did not occur when the viral RNAi suppressor was made inactive by genetic mutations in the host system.

C. elegans’ RNAi system is considered a “blanket system,” meaning that it has parallels in humans, making the worm model discovered by Ding and his colleagues a valuable tool in studying the way viruses interact with hosts. This tool may speed the discovery of treatments for virus-caused diseases that plague humans.

“The RNAi machinery is very similar between humans and C. elegans, and human viruses such as Influenza A virus and HIV are known to produce RNAi suppressors,” Ding said. “So now, the question is can we treat human viral diseases using chemical inhibitors of viral RNAi suppressors?”

The methods outlined in the Nature paper are now being used to generate additional C. elegans strains for screening chemical compounds that inactivate RNAi suppressors associated with avian flu, HIV and others.

Ricardo Duran | EurekAlert!
Further information:
http:// www.ucr.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>