Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that regulates aging may provide key to new diabetes therapies

18.08.2005


Opening the possibility of new therapies for type 2 diabetes, researchers at Washington University School of Medicine in St. Louis have found that a protein called Sirt1 enhances the secretion of insulin in mice and allows them to better control blood glucose levels. Their study will appear in the August 17 issue of Cell Metabolism.



According to senior author Shin-ichiro Imai, M.D., the finding suggests that therapies that increase the activity of Sirt1 could be of benefit in type 2 diabetes. "We are especially interested in how we can activate Sirt1 in a natural way," says Imai, assistant professor of molecular biology and pharmacology. "One option we are investigating is increasing the body’s synthesis of NAD, a necessary cofactor for Sirt1’s function. Because Vitamin B3, often called niacin, is a building block of NAD, it has interesting potential."

Sirt1 is referred to as Sir2 in lower organisms where it has previously proven to be a key to aging and longevity: Increasing the amount of Sir2 dramatically extends life spans in experimental yeast, worms and flies.


"Researchers, such as myself, who study aging are enthusiastically investigating Sir2," Imai says. "In 2000, I found that Sir2 responds to the level of energy in the form of NAD available in cells. Further research has shown that Sir2 connects nutrient status and longevity."

In mammals, scientists have shown that restricting calories can extend life span and also leads to an increase in Sirt1, the mammalian version of Sir2. Sirt1 reacts to changes in nutrient availability in a wide variety of tissues.

Uptake of the basic nutrient glucose is controlled by insulin, and Imai’s research group found that the cells responsible for secreting insulin--Beta cells in the pancreas--also produce Sirt1. So they investigated the effects of increasing the amount of Sirt1 in pancreatic Beta cells in mice to better understand the link between Sirt1 and glucose metabolism.

They designed transgenic mice with a genetic switch that turned up the gene that makes Sirt1 in Beta cells. "We confirmed that the mice overexpress Sirt1 proteins specifically in pancreatic Beta cells, not in other kinds of pancreatic cells, and not in brain, liver, kidney, fat or muscle," says Kathryn Moynihan, graduate research assistant.

Compared to wild-type mice, the transgenic mice had the same levels of blood glucose and insulin both when well-fed and during fasting. They were of similar weights and their pancreatic cells looked very similar in size and structure.

But when the two sets of mice were given a large dose of glucose, a difference became apparent. The transgenic mice produced more insulin and cleared glucose from their blood streams significantly faster than did wild-type mice.

Challenging the mice’s systems with glucose in this manner mimics the glucose tolerance tests used to check for diabetes in human patients. Diabetic patients clear glucose more slowly than do non-diabetics in these tests.

"If your system reacted like that of these transgenic mice, you could process sugar more quickly and much more efficiently after eating sweets," Imai says.

The research group found that the transgenic mice retained their unique Beta cell function as they aged from three months to eight months, the equivalent of middle age in humans. The researchers are continuing to track the progress of the mice, which are now about 20 months old.

An analysis of the activity of genes in the Beta cells showed that several genes linked to insulin secretion were affected by the increased expression of Sirt1. Most prominently, Sirt1 turned down the activity of a gene that decreases insulin secretion.

"The gene makes uncoupling protein 2, which is intimately connected to ATP production," Imai says. "ATP is a fundamental source of energy for metabolism, and by downregulating uncoupling protein 2, Sirt1 not only enhances insulin secretion, but increases ATP energy. This is a further indication of the connection between Sirt1 and energy status."

Imai feels that Sirt1 is probably a very important regulator that integrates cellular response to different types of nutrients, such as glucose, amino acids, and fatty acids. Continued research in the lab will use the transgenic mice to further investigate Sirt1’s role in this response.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>