Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that regulates aging may provide key to new diabetes therapies

18.08.2005


Opening the possibility of new therapies for type 2 diabetes, researchers at Washington University School of Medicine in St. Louis have found that a protein called Sirt1 enhances the secretion of insulin in mice and allows them to better control blood glucose levels. Their study will appear in the August 17 issue of Cell Metabolism.



According to senior author Shin-ichiro Imai, M.D., the finding suggests that therapies that increase the activity of Sirt1 could be of benefit in type 2 diabetes. "We are especially interested in how we can activate Sirt1 in a natural way," says Imai, assistant professor of molecular biology and pharmacology. "One option we are investigating is increasing the body’s synthesis of NAD, a necessary cofactor for Sirt1’s function. Because Vitamin B3, often called niacin, is a building block of NAD, it has interesting potential."

Sirt1 is referred to as Sir2 in lower organisms where it has previously proven to be a key to aging and longevity: Increasing the amount of Sir2 dramatically extends life spans in experimental yeast, worms and flies.


"Researchers, such as myself, who study aging are enthusiastically investigating Sir2," Imai says. "In 2000, I found that Sir2 responds to the level of energy in the form of NAD available in cells. Further research has shown that Sir2 connects nutrient status and longevity."

In mammals, scientists have shown that restricting calories can extend life span and also leads to an increase in Sirt1, the mammalian version of Sir2. Sirt1 reacts to changes in nutrient availability in a wide variety of tissues.

Uptake of the basic nutrient glucose is controlled by insulin, and Imai’s research group found that the cells responsible for secreting insulin--Beta cells in the pancreas--also produce Sirt1. So they investigated the effects of increasing the amount of Sirt1 in pancreatic Beta cells in mice to better understand the link between Sirt1 and glucose metabolism.

They designed transgenic mice with a genetic switch that turned up the gene that makes Sirt1 in Beta cells. "We confirmed that the mice overexpress Sirt1 proteins specifically in pancreatic Beta cells, not in other kinds of pancreatic cells, and not in brain, liver, kidney, fat or muscle," says Kathryn Moynihan, graduate research assistant.

Compared to wild-type mice, the transgenic mice had the same levels of blood glucose and insulin both when well-fed and during fasting. They were of similar weights and their pancreatic cells looked very similar in size and structure.

But when the two sets of mice were given a large dose of glucose, a difference became apparent. The transgenic mice produced more insulin and cleared glucose from their blood streams significantly faster than did wild-type mice.

Challenging the mice’s systems with glucose in this manner mimics the glucose tolerance tests used to check for diabetes in human patients. Diabetic patients clear glucose more slowly than do non-diabetics in these tests.

"If your system reacted like that of these transgenic mice, you could process sugar more quickly and much more efficiently after eating sweets," Imai says.

The research group found that the transgenic mice retained their unique Beta cell function as they aged from three months to eight months, the equivalent of middle age in humans. The researchers are continuing to track the progress of the mice, which are now about 20 months old.

An analysis of the activity of genes in the Beta cells showed that several genes linked to insulin secretion were affected by the increased expression of Sirt1. Most prominently, Sirt1 turned down the activity of a gene that decreases insulin secretion.

"The gene makes uncoupling protein 2, which is intimately connected to ATP production," Imai says. "ATP is a fundamental source of energy for metabolism, and by downregulating uncoupling protein 2, Sirt1 not only enhances insulin secretion, but increases ATP energy. This is a further indication of the connection between Sirt1 and energy status."

Imai feels that Sirt1 is probably a very important regulator that integrates cellular response to different types of nutrients, such as glucose, amino acids, and fatty acids. Continued research in the lab will use the transgenic mice to further investigate Sirt1’s role in this response.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>