Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make ’embryonic-like’ stem cells from umbilical cord blood

18.08.2005


A breakthrough in human stem cell research, producing embryonic-like cells from umbilical cord blood may substantially speed up the development of treatments for life-threatening illnesses, injuries and disabilities. The discovery made during a project undertaken with experts from the University of Texas Medical Branch and the Synthecon Corporation in the United States provides medical researchers and physicians with an ethical and reliable source of human stem cells for the first time.



The study, funded by the UK Government’s Department of Trade and Industry, is led by Dr Colin McGuckin and Dr Nico Forraz from Kingston University’s School of Life Sciences. It represents a significant step forward in the fast-developing field of stem cell research. Until now, experts have struggled to find a supply of cells in sufficient numbers that does not offend previous critics of stem cell research. The latest advance looks set to overcome such difficulties.

The trans-Atlantic team has been working with Drs Randall Urban, Larry Denner and Ronald Tilton from the University of Texas Medical Branch in Galveston. They have been using bioreactors at the Synthecon Corporation base in Houston enabling them to produce stem cells sharing many of the same characteristics as cells found in embryos. Research has so far relied on so-called adult cells found in blood and bone marrow from birth onwards or cells grown from embryos. The new type detected by the team harnesses the benefits of both. "We have found a unique group of cells that bring together the essential qualities of both types of stem cells for the first time," Dr McGuckin said.


The researchers findings may bring renewed hope to people awaiting treatment for a range of serious illnesses such as Diabetes, Alzheimer’s Disease and multiple sclerosis. "Acquiring stem cells from embryos also has major limitations because it is difficult to obtain enough cells to transplant as well as getting the right tissue type for the patient," Dr McGuckin said. "Using cord blood gets over that obstacle because we can produce more stem cells and, with a global birth rate of 100 million babies a year, there is a better chance of getting the right tissue type for the many patients out there waiting for stem cell therapy. There is also far less likelihood of such cells being rejected when they are transplanted into people with liver disease, for example."

The team has taken its first steps towards proving its claims by growing defined liver tissue using the new cell type. By making use of special NASA-derived technology, the team is able to cultivate greater numbers of cells in equipment mimicking the effects of space microgravity. "Using Synthecon’s bioreactors, originally designed by NASA, means the cells are able to expand faster, giving us a greater supply to work with," Dr Forraz said. "This system provides more cells for more tests, so we have the potential to make significant progress in applying the new cells to cure difficult to treat conditions such as juvenile diabetes, stroke, heart and liver disease."

Dr Urban who chairs UTMB’s Internal Medicine department and serves as director of its Stark Diabetes Centre said he looked forward to the next phase of what was proving to be a fruitful collaboration. "We plan to use this technology to engineer pancreatic tissue as we work towards our goal of developing a cure for type 1 diabetes," he added.

The team’s report will be published in the Cell Proliferation Journal on 18 August.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu
http://www.blackwell-synergy.com
http://www.kingston.ac.uk/bpsrg

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>