Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make ’embryonic-like’ stem cells from umbilical cord blood

18.08.2005


A breakthrough in human stem cell research, producing embryonic-like cells from umbilical cord blood may substantially speed up the development of treatments for life-threatening illnesses, injuries and disabilities. The discovery made during a project undertaken with experts from the University of Texas Medical Branch and the Synthecon Corporation in the United States provides medical researchers and physicians with an ethical and reliable source of human stem cells for the first time.



The study, funded by the UK Government’s Department of Trade and Industry, is led by Dr Colin McGuckin and Dr Nico Forraz from Kingston University’s School of Life Sciences. It represents a significant step forward in the fast-developing field of stem cell research. Until now, experts have struggled to find a supply of cells in sufficient numbers that does not offend previous critics of stem cell research. The latest advance looks set to overcome such difficulties.

The trans-Atlantic team has been working with Drs Randall Urban, Larry Denner and Ronald Tilton from the University of Texas Medical Branch in Galveston. They have been using bioreactors at the Synthecon Corporation base in Houston enabling them to produce stem cells sharing many of the same characteristics as cells found in embryos. Research has so far relied on so-called adult cells found in blood and bone marrow from birth onwards or cells grown from embryos. The new type detected by the team harnesses the benefits of both. "We have found a unique group of cells that bring together the essential qualities of both types of stem cells for the first time," Dr McGuckin said.


The researchers findings may bring renewed hope to people awaiting treatment for a range of serious illnesses such as Diabetes, Alzheimer’s Disease and multiple sclerosis. "Acquiring stem cells from embryos also has major limitations because it is difficult to obtain enough cells to transplant as well as getting the right tissue type for the patient," Dr McGuckin said. "Using cord blood gets over that obstacle because we can produce more stem cells and, with a global birth rate of 100 million babies a year, there is a better chance of getting the right tissue type for the many patients out there waiting for stem cell therapy. There is also far less likelihood of such cells being rejected when they are transplanted into people with liver disease, for example."

The team has taken its first steps towards proving its claims by growing defined liver tissue using the new cell type. By making use of special NASA-derived technology, the team is able to cultivate greater numbers of cells in equipment mimicking the effects of space microgravity. "Using Synthecon’s bioreactors, originally designed by NASA, means the cells are able to expand faster, giving us a greater supply to work with," Dr Forraz said. "This system provides more cells for more tests, so we have the potential to make significant progress in applying the new cells to cure difficult to treat conditions such as juvenile diabetes, stroke, heart and liver disease."

Dr Urban who chairs UTMB’s Internal Medicine department and serves as director of its Stark Diabetes Centre said he looked forward to the next phase of what was proving to be a fruitful collaboration. "We plan to use this technology to engineer pancreatic tissue as we work towards our goal of developing a cure for type 1 diabetes," he added.

The team’s report will be published in the Cell Proliferation Journal on 18 August.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu
http://www.blackwell-synergy.com
http://www.kingston.ac.uk/bpsrg

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>