Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover gene that controls speed of tuberculosis development

17.08.2005


Scientists at the MUHC have discovered a gene that controls the speed at which patients develop tuberculosis--the first time such a gene has been discovered for this disease. The new study published in the Proceedings of the National Academy of Science (PNAS) this week provides a new view of the mechanisms underlying the development of tuberculosis and may contribute to public health efforts aimed at containing the disease.



"About one-third of the world’s population is infected by Mycobacterium tuberculosis--the bacteria responsible for tuberculosis," says Dr. Erwin Schurr, a molecular geneticist at the Centre for the Study of Host Resistance at the MUHC, and the study’s principal investigator. "Of the estimated two billion people infected, only 5%-10% actually develop tuberculosis disease in their lifetime--the other 90%-95% appear to be able to contain the infection in a dormant state, so that they do not become ill." Dr. Schurr has spent the past 5 years researching why and how this happens.

The new research focused on NRAMP1--a gene already known to be involved in many other illnesses, including diseases as diverse as leprosy and rheumatoid arthritis. "We discovered that variants (alleles) of the NRAMP1 gene control the speed at which tuberculosis develops, rather than whether or not it will develop at all," says Dr. Schurr. "This is the first time a gene has been shown to control the time frame between initial infection and the disease." Certain factors are already known to increase the speed at which people develop tuberculosis. "HIV and tuberculosis are synergistic partners in crime for example," says Dr. Schurr. "They appear to accelerate disease progression when they occur together."


"Understanding the basic pathways of pathogenesis offers new targets and policies for disease prevention," notes Dr. Emil Skamene, Scientific Director of the Research Institute of the MUHC. "Academic hospitals such as the MUHC combine scientific research, technology and clinic expertise, enabling scientific breakthroughs to be developed into treatments and cures that directly benefit patients."

Ian Popple | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>