Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover gene that controls speed of tuberculosis development

17.08.2005


Scientists at the MUHC have discovered a gene that controls the speed at which patients develop tuberculosis--the first time such a gene has been discovered for this disease. The new study published in the Proceedings of the National Academy of Science (PNAS) this week provides a new view of the mechanisms underlying the development of tuberculosis and may contribute to public health efforts aimed at containing the disease.



"About one-third of the world’s population is infected by Mycobacterium tuberculosis--the bacteria responsible for tuberculosis," says Dr. Erwin Schurr, a molecular geneticist at the Centre for the Study of Host Resistance at the MUHC, and the study’s principal investigator. "Of the estimated two billion people infected, only 5%-10% actually develop tuberculosis disease in their lifetime--the other 90%-95% appear to be able to contain the infection in a dormant state, so that they do not become ill." Dr. Schurr has spent the past 5 years researching why and how this happens.

The new research focused on NRAMP1--a gene already known to be involved in many other illnesses, including diseases as diverse as leprosy and rheumatoid arthritis. "We discovered that variants (alleles) of the NRAMP1 gene control the speed at which tuberculosis develops, rather than whether or not it will develop at all," says Dr. Schurr. "This is the first time a gene has been shown to control the time frame between initial infection and the disease." Certain factors are already known to increase the speed at which people develop tuberculosis. "HIV and tuberculosis are synergistic partners in crime for example," says Dr. Schurr. "They appear to accelerate disease progression when they occur together."


"Understanding the basic pathways of pathogenesis offers new targets and policies for disease prevention," notes Dr. Emil Skamene, Scientific Director of the Research Institute of the MUHC. "Academic hospitals such as the MUHC combine scientific research, technology and clinic expertise, enabling scientific breakthroughs to be developed into treatments and cures that directly benefit patients."

Ian Popple | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>