Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover gene that controls speed of tuberculosis development


Scientists at the MUHC have discovered a gene that controls the speed at which patients develop tuberculosis--the first time such a gene has been discovered for this disease. The new study published in the Proceedings of the National Academy of Science (PNAS) this week provides a new view of the mechanisms underlying the development of tuberculosis and may contribute to public health efforts aimed at containing the disease.

"About one-third of the world’s population is infected by Mycobacterium tuberculosis--the bacteria responsible for tuberculosis," says Dr. Erwin Schurr, a molecular geneticist at the Centre for the Study of Host Resistance at the MUHC, and the study’s principal investigator. "Of the estimated two billion people infected, only 5%-10% actually develop tuberculosis disease in their lifetime--the other 90%-95% appear to be able to contain the infection in a dormant state, so that they do not become ill." Dr. Schurr has spent the past 5 years researching why and how this happens.

The new research focused on NRAMP1--a gene already known to be involved in many other illnesses, including diseases as diverse as leprosy and rheumatoid arthritis. "We discovered that variants (alleles) of the NRAMP1 gene control the speed at which tuberculosis develops, rather than whether or not it will develop at all," says Dr. Schurr. "This is the first time a gene has been shown to control the time frame between initial infection and the disease." Certain factors are already known to increase the speed at which people develop tuberculosis. "HIV and tuberculosis are synergistic partners in crime for example," says Dr. Schurr. "They appear to accelerate disease progression when they occur together."

"Understanding the basic pathways of pathogenesis offers new targets and policies for disease prevention," notes Dr. Emil Skamene, Scientific Director of the Research Institute of the MUHC. "Academic hospitals such as the MUHC combine scientific research, technology and clinic expertise, enabling scientific breakthroughs to be developed into treatments and cures that directly benefit patients."

Ian Popple | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>